
A Cache-based Data Movement Infrastructure for On-

demand Scientific Cloud Computing

David Abramson
1
, Jake Carroll

1
, Chao Jin

1
, Michael Mallon

1
, Zane van Iperen

1
, Ho-

ang Nguyen
1
, Allan McRae

1
, and Liang Ming

2

1
The University of Queensland, St Lucia QLD 4072, Australia

2
Huawei Technologies Co., Ltd., Shenzhen, China

{david.abramson, jake.carroll, c.jin, m.mallon, z.vaniperen,

h.nguyen30, a.mcrae}@uq.edu.au and l.ming@huawei.com

Abstract. As cloud computing has become the de facto standard for big data

processing, there is interest in using a multi-cloud environment that combines

public cloud resources with private on-premise infrastructure. However, by de-

centralizing the infrastructure, a uniform storage solution is required to provide

data movement between different clouds to assist on-demand computing. This

paper presents a solution based on our earlier work, the MeDiCI (Metropolitan

Data Caching Infrastructure) architecture. Specially, we extend MeDiCI to sim-

plify the movement of data between different clouds and a centralized storage

site. It uses a hierarchical caching system and supports most popular infrastruc-

ture-as-a-service (IaaS) interfaces, including Amazon AWS and OpenStack. As

a result, our system allows the existing parallel data intensive application to be

offloaded into IaaS clouds directly. The solution is illustrated using a large bio-

informatics application, a Genome Wide Association Study (GWAS), with Am-

azons AWS, HUAWEI Cloud, and a private centralized storage system. The

system is evaluated on Amazon AWS and the Australian national cloud.

Keywords: Cloud, Big Data, Caching, Data Migration.

1 Introduction

Presently, many big data workloads operate across isolated data stores that are dis-

tributed geographically and manipulated by different clouds. For example, the typical

scientific data processing pipeline [27][41] consists of multiple stages that are fre-

quently conducted by different research organizations with varied computing de-

mands. Accordingly, accelerating data analysis for each stage may require computing

facilities that are located in different clouds. Between different stages of the geo-

graphical data pipeline, moving a large amount of data across clouds is common

[5][38]. This type of multi-cloud environment can consist of resources from multiple

public cloud vendors, such as Amazon AWS [1] and Microsoft Azure [30], and pri-

vate data centers. Multi-cloud is used for many reasons, such as best-fit performance,

increased fault tolerance, lower cost, reduced risk of vendor lock-in, privacy, security,

and legal restrictions. Different from hybrid-cloud, however, data silos in multi-cloud

are isolated by varied storage mechanisms of different vendors. This complicates

2

applying on-demand computing for scientific research across clouds. Although com-

putation offloading into clouds is standardized with virtual machines, a typical data

processing pipeline faces multiple challenges in moving data between clouds. First, a

uniform way of managing and moving data is required across different clouds. Se-

cond, the network connections for inter-clouds and intra-cloud are typically different

in terms of bandwidth and security. Moving a large amount of data between centers

must utilize critical resources such as network bandwidth efficiently, and resolve the

difficulties of latency and stability issues associated with long-haul networks. Third,

users have to maintain the consistency of duplicated copies between silos with differ-

ent storage mechanisms. Fourth, data migration between the stages of a pipeline needs

to cooperate efficiently with computing tasks scheduling.

In this work, we propose a hierarchical global caching architecture across geo-

graphical data centers of different clouds. Such a system supports automatic data mi-

gration to cooperate on-demand Cloud computing. It unifies distant data silos using a

file system interface (POSIX) and provides a global namespace across different

clouds, while hiding the technical difficulties from users. Data movement between

distant data centers is made automatic using caching. Our high performance design

supports massive data migration required by scientific computing. Our previous work,

called MeDiCI [10], has been shown to work well in an environment consisting of

private data centers dispersed across the metropolitan area. In this paper, we extend

MeDiCI into the multi-cloud environment that consists of most popular infrastructure-

as-a-service (IaaS) cloud platforms, including Amazon AWS and OpenStack-based

public clouds, and Australian data centers of NeCTAR (The National eResearch Col-

laboration Tools and Resources). Existing parallel data intensive applications are

allowed to run in the virtualized resources directly without significant modifications.

This paper mainly discusses the following innovations:

• A global caching architecture that moves data across clouds in accordance

with on-demand compute and storage resource acquirement;

• A demonstration of the proposed architecture using parallel file system com-

ponents;

• A platform independent mechanism that manages the system across different

IaaS clouds, including Amazon AWS and OpenStack-based clouds;

• Demonstrating our solution using a Genome Wide Association Study with

resources from Amazon Sydney and a centralized storage site in Brisbane.

The rest of the paper is organized as follows. Section 2 provides an overview of re-

lated work and our motivation. Section 3 introduces our proposed global caching

architecture. Sections 4 describe the realization of our storage architecture. Section 5

provides a detailed case study in Amazon EC2 and HUAWEI Cloud with according

performance evaluation. Our conclusions follow in Section 6.

2 Background

Massive data analysis in the scientific domain [27][31] needs to process data that is

generated from a rich variety of sources, including scientific simulations, instruments,

3

sensors, and Internet services. Many data intensive applications are embarrassingly

parallel and can be accelerated using the high throughput model of cloud computing.

Therefore, complementing private data centers with on-demand resources drawn from

multiple (public) clouds is frequently used to tolerate compute demand increases.

However, offloading computation into clouds not only requires acquiring compute

resources dynamically, but also moving target data into the allocated virtual ma-

chines. Most existing storage solutions are not designed for a multi-cloud environ-

ment. In particular, they often require users to move data between processing steps of

a geographical data processing pipeline explicitly. In addition, many existing methods

do not directly support parallel IO to improve the performance of scalable data analy-

sis. This section reviews the existing methods and motivates our solution.

“Data diffusion” [19][20], which can acquire compute and storage resources dy-

namically, replicate data in response to demand, and schedule computations close to

data, has been proposed for Grid computing. In the cloud era, the idea has been ex-

tended to scientific workflows that schedule compute tasks [41] and move required

data across the global deployment of cloud centers. Both data diffusion and cloud

workflows rely on a centralized site that provides data-aware compute tasks schedul-

ing and supports an index service to locate data sets dispersed globally. In contrast,

our model suits a loosely coupled working environment in which no central service of

task scheduling and data index is required. Actually, each department controls its own

compute resources and the collaboration between departments relies on shared data

sets that are stored in a central site for long-term use. Our previous solution, MeDiCI

[10], works well on dedicated resources. In this paper, we extend MeDiCI to a multi-

cloud environment with dynamic resources and varied storage mechanisms.

A substantial portion of our work needs to move data across different clouds effi-

ciently. Cloud storage systems, such as Amazon S3 [1] and Microsoft Azure [30],

provide specific methods to exchange data across centers within a single cloud, and

mechanisms are available to assist users to migrate data into cloud data centers. For

instance, the Microsoft Azure Data Factory and the AWS Data Pipeline support data-

driven workflows in the cloud to orchestrate and to automate data movement and data

transformation. These cloud specific solutions mainly handle data in the format of

cloud objects and database. Some other workflow projects combine cloud storage,

such Amazon S3, with local parallel file systems to provide a hybrid solution. For

example, a staging site [26] is introduced for Pegasus Workflow Management System

to convert between data objects and files and supports both Cloud and Grid facilities.

In comparison, some cloud backup solutions, such as Dropbox [9], NextCloud [34],

and SPANStore [46], provide seamless data access to different clouds. However, most

of these cloud storage solutions do not directly support parallel IO that is favored by

embarrassing parallel data intensive applications.

Recent projects support directly transferring files between sites to improve overall

system efficiency [39]. For example, OverFlow [40][38] provides a uniform storage

management system for multi-site workflows that utilize the local disks associated

with virtual machine instances. It extends replication service to handle data transfer

for inter-site and intra-site traffic using different protocols and mechanisms. This type

4

of customized storage solution is designed to cooperate with the target workflow

scheduler using a set of special storage APIs.

The distributed file system provides a general storage interface widely used by al-

most all parallel applications. How to support a distributed file system in the global

environment has been investigated extensively [24][42][12][33][14][23][6][28]. Typi-

cally, the tradeoff between performance, consistency, and data availability must be

compromised appropriately to address the targeted data access patterns. Most general

distributed file systems designed for the global environment focus on consistency at

the expense of performance. The Andrew File System (AFS) [25] federates a set of

trusted servers to provide a consistent and location independent global namespace to

all of its clients. The AFS caching mechanism allows accessing files over a network

as if they were on a local disk. OpenAFS [35] is an open source software project im-

plementing the AFS protocol. Exposing clustered file systems, such as GPFS and

Lustre, to personal computers using OpenAFS has been investigated [18]. Frequently,

AFS caching suffers from performance issues due to overrated consistency and a

complex caching protocol [29]. Overall, AFS was not designed to support large-scale

data movement required by on-demand scientific computing. The similar idea of us-

ing a global caching system to transfer data in a wide area was also investigated by

Content Delivery Networks (CDN) [12]. CDN caches site content at the edge of the

Internet, close to end users, in order to improves website performance. In comparison,

BAD-FS [22] and Panache [32] improve data movement onto remote computing clus-

ters distributed across the wide area, in order to assist dynamic computing resource

allocation. BAD-FS supports batch-aware data transfer between remote clusters in a

wide area by exposing the control of storage policies such as caching, replication, and

consistency and enabling explicit and workload-specific management. Panache is a

scalable, high-performance, clustered file system cache that supports wide area file

access while tolerating WAN (Wide Area Network) latencies. It transfers remote files

in parallel using the NFS protocol, instead of other batch mode data movement solu-

tions, such as GridFTP [43] and GlobusOnline [7]. Panache maintains the consistency

of both meta-data and files.

Our previous work, MeDiCI [10], builds on AFM [17], which is a commercial ver-

sion of Panache. MeDiCI constructs a hierarchical caching system using AFM and

parallel file systems. MeDiCI exploits temporal and spatial locality to move data on

demand in an automated manner across our private data centers that spans the metro-

politan area. With this paper, we extend MeDiCI to 1) unify the varied storage mech-

anisms across clouds using the POSIX interface; and 2) provide a data movement

infrastructure to assist on-demand scientific computing in a multi-cloud environment.

3 Design

A geographical data processing pipeline may consist of multiple stages and each stage

could be executed in different data centers that have appropriate computing facilities.

Each stage needs to process both local data and remote files, which require moving

data from a remote center to the local site. After each stage is finished, the migrated

5

data can be deleted according to the specific request, while the generated output may

be collected. Frequently, a central storage site keeps long-term use data for pipelines.

The common data access patterns of these pipelines include data dissemination, col-

lection, and aggregation [38]. In addition, concurrent data write operations across

different phases are very rare.

Our global caching infrastructure aims to support this type of data pipeline that are

performed using compute resources allocated dynamically in IaaS clouds. Our system

provides a POSIX interface and supports parallel IO to the data intensive applications

running in a virtual cluster. With this storage infrastructure, applications do not have

to be modified and can be offloaded into clouds directly.

In particular, this global caching architecture accommodates on-demand data

movement across different clouds to meet the following requirements: 1) a unified

storage solution for multi-cloud; 2) automatic on-demand data movement to fetch data

from a remote site; 3) facilitating parallel IO for high performance computing direct-

ly; 4) supporting data access patterns commonly used; and 5) efficiently utilizing the

network bandwidth to transfer a large amount of data over distant centers.

Fig. 1. The hierarchical caching architecture across different clouds.

Our design principle builds on the following key factors.

A global namespace with a POSIX interface: most high performance computing

applications rely on a traditional file interface, instead of the cloud objects. Exposing

a file interface can save the extra effort of converting between files and objects and it

works with many existing scientific applications seamlessly. Furthermore, the global

namespace across different clouds allow multiple research organizations share the

same set of data without concerning its exact location.

A hierarchical caching architecture: the caching architecture aims to migrate re-

mote data to locate sites in an automated manner without users’ direct involvement. In

addition, it takes advantage of data location to save unnecessary data transfer.

Data consistency model for the target data access patterns: appropriate data con-

sistency model is critical for the global performance and latency perceived by applica-

tions. Our consistency model supports common data access patterns, such as data

dissemination and data collections.

Cloud A

Cloud C
Cloud B

Cached copy

Primary copy

Stage	1	 Stage	3	Data processing pipeline:

Local data

a

c

d

b

(Primary site)

(Caching site)
(Caching site)

Stage	2	

6

Network optimization for distant connections: our system should support optimized

global network path with multiple hops, and improve the usage of limited network

bandwidth.

The expense of acquiring virtual clusters is out of the scope of this paper. In partic-

ular, we expect that users should be aware of whether the advantage of using a remote

virtual cluster offsets the network costs caused by significant inter-site data transfer.

3.1 Hierarchical Global Caching Architecture

Many distributed storage systems use caching to improve performance by reducing

remote data access. Different from other work, our global caching architecture uses

caching to automate data migration across distant centers. The proposed caching

model assumes that each data set in the global domain has a primary site and can be

cached across multiple remote centers using a hierarchical structure, as exemplified in

Fig. 1, in which the primary site is the central storage center for keeping long-term

use data. Each data set has a primary copy maintained by its primary site and multiple

cached copies maintained by caching sites. The primary copy and cached copies form

a tree structure, in which the primary copy is the root. As illustrated in Fig. 1, the

primary copy is maintained by Cloud A on site a and it is cached in Cloud B and C

respectively. In Cloud C, the data is cached on two sites, c and d.

Fig. 2. Data movement path.

Each file in this system can have multiple replicas across data centers that are iden-

tified using the same logical name. Within a single data site, a replica is controlled by

the local storage solution, typically a parallel file system, which may use data duplica-

tion to improve performance. All the copies in a single center are taken as a single

logical copy. Across data centers, duplications of logical replicas and their consisten-

cy are managed by the global caching architecture. Users are not aware of the exact

location for each data set. However, data is actually moved between geographically

distributed caching sites according to data processing requirements, in order to lower

the latency to frequently accessed data. The migrated data set typically stays locally

for the term of use, instead of permanently. The basic data migration operations are

supported: 1) fetching remote files to the local site; and 2) sending local updates to a

remote site. These two basic operations can be composed to support the common data

access patterns, such as data dissemination, data aggregation and data collection.

Primary Copy

Level 1 Cache Level 1 Cache

Level 2 Cache

Cloud C

Cloud B

Cloud A

Write

Read

7

Data movement is triggered on-demand, although pre-fetch can be used to hide the

latency according to the exact data access patterns. Cache capacity on each site is

configurable, and an appropriate data eviction algorithm is used to maximize data

reuse. In the hierarchical caching architecture, data movement only occurs between

neighbor layers. Fig. 2 illustrates the data movement path for the caching architecture

of Fig. 1. The top tier caching serves any requested data from the next layer of cache

in line. When a cache miss occurs, the request will be forwarded to the next tier of the

hierarchical cache, until the primary site is reached. Typically, a read operation moves

data from the primary site to the targeted caching site layer by layer, while writes are

committed in a reverse order to the primary site.

The hierarchical structure enables moving data through intermediate sites. This

layered caching architecture can be adopted in two scenarios: 1) improving the usage

of local data copies while decreasing remote data access; and 2) data movement

adapted to the global topology of network connections. The exact path to transfer data

from the source site to the destination center should be optimized, because the direct

network path between two sites may not be the fastest one. In particular, all of the

available global network paths should be examined to take advantage path and file

splitting [15]. Sometime, adding an intermediate hop between source and destination

sites performs better than the direct link. This feature can be achieved by using the

hierarchical caching structure naturally. Transferring data via an intermediate site

only need to add the cached directory for the target data set, as described in section

3.2. For example, in Fig. 1, assume site a has poor direct network connection with site

d, but site c connects both a and d with high bandwidth network. Therefore, site a can

move data to d using site c as an intermediate hop with the layered caching structure.

3.2 Global Namespace and POSIX File Interface

With a geographical data pipeline, we envisage that different cloud facilities can take

part in the collaboration and exit dynamically. Distant collaborative sites should be

loosely coupled. Accordingly, we need a flexible method to construct the storage

system across different clouds. In order to allow data to be exchanged transparently

across different clouds, a consistent and uniform namespace needs to span a set of

distant centers. In addition, different from many other systems, our caching architec-

ture does not maintain a global membership service that monitors whether a data cen-

ter is online or offline. This saves the overhead of keeping the location of each piece

of data in multi-cloud.

The global namespace is provided using the POSIX file interface, and is construct-

ed by linking the remote data set to a directory in the local file system. In other words,

a local directory is specified to hold the cache for the remote data set. Multiple remote

data sets, which may originate from different data centers, can be stored in different

directories on the same site. Therefore, a POSIX file interface unifies storage access

for both local and remote data. The cached remote directory has no difference from

other local directories, except its files are copied remotely whenever necessary.

8

3.3 Storage Organization of a Caching Site

In each site, a local parallel file system is used to maintain both cached remote data

and local files accessed by the parallel applications running in the virtual cluster. The

local parallel file system can be installed on dedicated storage resources to work as a

shared storage service, or located on storage devices associated with the same set of

compute resources allocated for the data analysis job. The first option maintains

cached data for long-term usage, while the second option suits short-term data

maintenance, because data storage is normally discarded after computing is finished.

The storage media used in each site can be multi-tiered, using varied storage devices

such as SSD and hard disk drives. How to organize the storage media to host the par-

allel file system is out of the scope of this paper.

3.4 Data Consistency

To accommodate common data access patterns used in typical data analysis pipelines,

we adopt a consistency model to prioritize data access performance while providing

acceptable consistency. In particular, data consistency within a single site is guaran-

teed by the local parallel file system. Across distant sites, a weak consistency seman-

tic is supported across shared files and a lazy synchronization protocol is adopted to

save unnecessary remote data movement. Remote files are copied only when they are

accessed. However, a prefetching policy can be specified to hide the latency of mov-

ing data, such as copying neighbor files when one file in a directory is accessed. The

validity of cached files is actively maintained by each caching site. The validity is

verified both periodically and when directories and files are accessed. In addition,

users can select an appropriate policy for output files, such as write-through or write-

back, to optimize performance and resilience.

The updates on large files are synchronized using a lazy consistency policy, while

meta-data is synchronized using a prompt policy. Assuming each caching site verifies

its validation every f seconds, for an n level caching hierarchy, the protocol guaran-

tees that the whole system reaches consistency on updated meta-data within 2n•f se-

conds. This consistency model supports data dissemination and collections very well

across distant sites on huge files, according to our experience.

3.5 Component Interaction

Fig. 3 illustrates the major components that realize the global caching architecture

across distant sites. A POSIX file interface spans different clouds to provide a uni-

form storage access interface. In each site, different native parallel file system can be

used and a file system adaptor provides a general POSIX-compliant interface. The

Global Caching module maintains the connections between each cached data set and

its parent copy. It coordinates with its peer on the remote site to move requested files

according to user requests and to synchronize updates. The Global Caching module

builds on top of the local native parallel file system by organizing the local storage

space to maintain the duplicated copies of remote files. It intercepts local file requests

9

and moves remote data transparently in case the requested file is not available locally.

Therefore, it exposes the same POSIX-compliant file interface to applications. Ac-

cordingly, the global namespace is provided using the tree-based directory structure

and seamlessly integrates into the namespace of local file system. The Consistency

module coordinates the data synchronization according to user specified configura-

tions.

Fig. 3. Major components in the global caching architecture.

4 System Demonstrations

We are currently building on a prototype of the global caching architecture for testing

and evaluation purpose. We reuse existing file system components as much as possi-

ble to minimize the implementation effort. The caching system builds on GPFS [13],

Active File Management (AFM) [17], and the NFS protocol [37]. We realized a plat-

form-independent method to allocate, instantiate and release the caching instance with

the target compute cluster across different IaaS clouds in an on-demand manner.

4.1 Existing Components

GPFS is a parallel file system designed for clusters, but behaves likes a general-

purpose POSIX file system running on a single machine. GPFS uses the shared-disk

architecture to achieve extreme scalability, and supports fully parallel access both to

file data and metadata. Files are striped across all disks, while distributed locking

synchronizes accesses to shared disks. Our caching system uses the GPFS product,

(also known as IBM Spectrum Scale [16]), to hold both local and remote data sets.

As a component of IBM Spectrum Scale, AFM is a scalable, high-performance,

clustered file system cache across a WAN. It provides a POSIX-compliant interface

with disconnected operations, persistence across failures, and consistency manage-

ment. AFM transfers data from remote file systems and tolerates latency across long

haul networks using the NFS protocol. Parallel data transfer is supported with concur-

rent NFS connections.

Fig. 4 illustrates an instance of the global caching site. The GPFS cluster provides

data service to the compute cluster. Each GPFS cluster is equipped with an AFM

component. Each server is attached multiple network shared disks. A configuration of

mirror redundancy is shown in Fig. 4. The number of servers and associated disks

Centre A

G
lo

b
al N

am
esp

ace

Global Caching System

Moving Data

	

C
o
n
sisten

cy

Global Caching

File system adaptor

Native file system

POSIX File Interface POSIX File Interface

Global Caching

File system adaptor

Native file system

Global Caching

File system adaptor

Native file system

Centre B Centre C

Cached copy Cached copy Primary copy

Moving Data

	

10

depends on the total storage capacity needed. The number of gateway nodes deter-

mines the aggregated bandwidth that can be achieved to transfer data in and out from

the cluster. Quorum managers maintain data consistency in the failure cases. The

compute cluster consists of multiple workers and a job scheduler with a login node.

Fig. 4. An instance of the global caching site.

4.2 Platform-independent System Resource Management

The global caching system aims to support different IaaS cloud systems and provides

a platform-independent way of managing resource usage, including compute and

storage resource allocation, instantiation and release. Our primitive implementation

handles Amazon EC2, HUAWEI Public Cloud and OpenStack-based clouds. We

realized a tool that supports different cloud orchestration methods, such as Cloud-

Formation in EC2 and Heat in OpenStack and HUAWEI Cloud, to automate the allo-

cation, release, and deployment of both compute and storage resources for building

the caching site. To configure each virtual node and storage resources in an automated

manner, we use Ansible [2] scripts. Both CloudFormation and Heat support Resource

Tags to identify and categorize cloud resources. Our automation tool utilizes this fea-

ture to generate Ansible inventory and variables programmatically for system installa-

tion and configuration.

Table 1. Cloud resources in Amazon EC2, HUAWEI Cloud, and OpenStack.

Resources Amazon EC2 HUAWEI Cloud OpenStack

Virtual machine Instance Elastic Compute Server Nova Instance

OS Images AMI Glance Glance

Block Storage EBS Elastic Volume Service Cinder

Private Network VPC VPC Neutron network

Public IP Public IP Elastic IP Floating IP

AAA SSH key pairs SSH key pairs SSH key pairs

GPFS Servers

Network shared disks

Gateway nodes

Quorum managers AFM

GPFS	Cluster	

NFS

Compute	Cluster	

Workers Login
node

Job
scheduler

11

In order to accommodate a consistent caching system deployment over different

clouds, according network resources, Authentication, access and authorization

(AAA), virtual machines, and storage instances must be supported. Table 1 lists sup-

ported resources in Amazon EC2, HUAWEI Cloud, and OpenStack.

Fig. 5 illustrates the typical deployment in both HUAWEI and Amazon clouds. In

HUAWEI Cloud, shown in the left half of Fig. 5, both the compute and GPFS clusters

are instantiated using Elastic Compute Server (ECS). Each GPFS server is attached

with two Elastic Volume Service (EVS) disks. All of the ECS servers are connected

with a Virtual Private Cloud (VPC) that communicates with the Internet via a NAT

gateway. Each GPFS gateway node is equipped with an Elastic IP (EIP) to access the

Internet directly. In EC2, different resources are used to provide the similar configura-

tion, as illustrated in the right half of Fig. 5. Our automation tool allows for and ac-

commodates configurable parameters for the type and number of instances as well as

block devices attached, operating system image and other tunable parameters.

4.3 Data Transfer Optimization

Achieving high performance data transfer in a WAN requires tuning the components

associated with the distant path, including storage devices and hosts in both source

and destination sites and network connections [4][8][45]. Critical system parameters

such as the TCP buffer size and the number of parallel data transfers in AFM must be

optimized. In most cases, it is necessary to transfer the data with multiple Socket con-

nections in order to utilize the bandwidth of the physical link efficiently. Besides

moving multiple files concurrently, parallel data transfer must support file split to

transfer a single large file. With AFM, parallel data transfer can be achieved at differ-

ent levels: 1) multiple threads on a single gateway node; 2) multiple gateway nodes.

Each option suits for different scenario. For example, in case the Network Interface

Card (NIC) on a single gateway node provides enough bandwidth, the first option is

enough. In case there is restriction on the NIC bandwidth, multiple gateway nodes can

be used. AFM supports parallel data transfer with configurable parameters to adjust

the number of concurrent read/write threads, and the size of chunk to split a huge file.

With Amazon EC2, we use a single gateway node with multiple threads to parallel-

ize data transfer. However, with HUAWEI Cloud, each EIP has a bandwidth limita-

tion. To maximize the performance of copying remote files, multiple gateway nodes

are used in the cache site. Accordingly, in the home site the same number of NFS

servers are deployed. The mapping between them is configured explicitly with AFM.

4.4 Data Consistency

The following data consistency modes are provided to coordinate concurrent data

access across distant centers with the assistance of AFM:

• Read Only: each caching site can only read the cached copies, but cannot

update them.

• Single Writer: only a single data site updates the cached file set, and the up-

dates are synchronized to other caching sites automatically.

12

• Concurrent Writer: multiple writers update the same file with application

layer coordination. The updates are synchronized without users interference.

AFM allows data to be cached at the block level, while data consistency is main-

tained per file. When reading or writing a file, only the accessed blocks are fetched

into a local cache. When the file is closed, the dirty blocks are written to the local file

system and synchronized remotely to ensure a consistent state of the file.

 Fig. 5. The deployment of a caching instance in HUAWEI Cloud and Amazon EC2.

5 Case Study and Performance Evaluation

We use a Genome Wide Association Study (GWAS) as an application driver to show

how to use our global caching architecture to assist on-demand scientific computing

across different clouds. GWAS are hypothesis-free methods to identify associations

between regions of the genome and complex traits and disease. This analysis was

performed on data from the Systems Genomics of Parkinson's Disease consortium,

which has collected DNA methylation data on about 2,000 individuals. This study

aimed to test how genetic variation alters DNA methylation, an epigenetic modifica-

tion that controls how genes are expressed, while the results are being used to under-

stand the biological pathways through which genetic variation affects disease risk.

The work totally conducts 3.3 x 10
12

 statistical tests using the PLINK software

[36]. The workload is essentially embarrassingly parallel and does not require high

performance communication across virtual machines within the cloud. The data to be

analyzed, around 40GB in total, is stored in NeCTAR’s data collection storage site

located in the campus of the University of Queensland (UQ) at Brisbane. The input

data is moved to the virtualized clusters, acquired in Amazon EC2 and HUAWEI

Cloud, as requested. In addition, we can control the size of the cloud resource, for

both the compute and GPFS clusters, according to our testing requirements.

ECS EVS

EIP

In
t
e
r
n
e
t
	

Instance	in	HUAWEI	

VPC

Instance GPFS Gateway GPFS Quorum manager

GPFS Server Compute Server NAT Gateway

Instance	in	EC2	

NAT Gateway

Private subnet Public subnet

13

5.1 System Deployment

As shown in Fig. 6, virtualized compute clusters acquired from EC2 and HUAWEI

clouds respectively process input data stored in Brisbane. Each instance, including

both compute and GPFS clusters, is created using the automation tool described pre-

viously. The size of each instance was selected to make the best usage of our availa-

ble credit. The EC2 instance is created with a single VPC located in Sydney availabil-

ity zone. The HUAWEI instance consists of two layers. The first layer is a caching

only site located in Beijing and the second layer consists of both caching and compute

clusters located in Shanghai. The EC2 and HUAWEI resources connected to the cen-

tral storage site in Brisbane via the global caching architecture. The data transferred

between these data sites is achieved using NFS connections and AFM caching. Typi-

cally, AFM NSD protocol outperforms NFS. However, due to the security concern

occurred in the public network, we could only use NFS. The global caching system

provided local access to data even though it was actually stored in NeCTAR, and the

necessary files were fetched transparently on demand. Likewise, output files were

written back to NeCTAR without the user being aware. Therefore, the application was

identical to as if it was executed on a local cluster without any modification.

In the EC2 cluster, the Nimrod [11] job scheduler was used to execute 500,000

PLINK tasks, spreading the load across the compute nodes and completing the work

in three days. Overall, approximately 60 TBs of data were generated by the experi-

ment and sent back to Brisbane for long-term storage and post-processing.

Fig. 6. The deployment of the global caching architecture for GWAS case study.

With the hierarchical caching structure in HUAWEI cloud, the input data was

moved from Australia to Beijing first and then copied to Shanghai center. Due to

credit limitation, no significant compute jobs were executed in HUAWEI Cloud.

5.2 AWS EC2 Instance Selection

We investigated the appropriate AWS instance for our EC2 experiment. Due to the

constraints of time and cost, we could not exhaustively explore all the available in-

stances. We used a holistic approach to identify which instance types provide optimal

NeCTAR

Primary Copy

Amazon EC2

Caching Caching

HUAWEI

Caching

HUAWEI
Compute	cluster	

PLINK	analysis	

Compute	cluster	

PLINK	analysis	

Shanghai Beijing Sydney

Brisbane

14

performance for different roles. Briefly, with the option of network-attached storage,

instance types, such as m4, could not provide sufficient EBS bandwidth for GPFS

Servers. Therefore, we examined the instances associated with the ephemeral storage

of local block devices. However, the d2 series, namely the d2.8xlarge type, experi-

enced hardware and underlying infrastructure reliability issues. Finally, we used the i3

instance types, i3.16xlarge, for the GPFS cluster that provided 25 Gbit/sec network

with the ephemeral NVMe class storage, and had no reliability issues. For the com-

pute cluster, we selected the compute-optimized flavours, c5.9xlarge. It had a dedi-

cated 10 Gbit/sec bandwidth with Intel Xeon Skylake CPUs.

Table 2. Configurations of Amazon EC2 Testing.

Type of nodes Instances Count Details

Nimrod worker c5.9xlarge 25 750 Xeon Skylake cores in total.

AFM Gateway i3.16xlarge 2 Each instance is equipped with

GPFS Quorum i3.16xlarge 3 25 Gbit/sec network bandwidth

GPFS Server i3.16xlarge 10 and 8 x 1.9TB NVME.

To determine instance counts, we matched aggregated worker bandwidth to GPFS

Server bandwidth to satisfy a fully balanced IO path. Further, we tested a small scale

of the PLINK workload to estimate run time per job and then sized our virtual cluster

to execute the full workload within ~3 days. The final configuration is listed in Table

2. Totally, 750 Nimrod worker threads were launched on the compute cluster.

5.3 Network Transfer Optimization

The network between AWS Sydney and UQ is 10Gbps with around 18.5ms latency.

The connection is under a peering arrangement between the national research network

provider, AARNET, and Amazon. The network is shared with other academic and

research sector AARNET partners. Therefore, our configuration aims to maximize the

effective bandwidth. For this case, a single active gateway node was used with 32

AFM read/write threads at the cache site. In comparison, the default option is just one

read/write thread. TCP buffers were tuned to improve performance at both source and

destination sites. The home NFS server currently serves production workloads and

requires 4,096 NFS daemons to service this workload. With these optimizations in

place, we achieved about 2 Gbps, which is 20% of the peak bandwidth on the shared

public link. The total amount of data moved from UQ to Amazon Sydney was 40GB,

but the amount of data moved back to our datacenter (home) was 60TB in total.

5.4 Performance Evaluation

During the 3 days of experiment, system utilization was on average about 85~92% on

each node, with the I/O peaking at about 420,000 input and 25,000 output operations

15

per second (IOPS). The total 500,000 tasks were launched in 5 batches sequentially.

This allowed us to optimize the system configuration while monitoring the progress

of computing and expense used. Actually, the system was tuned in the first batch.

Therefore, we only present the performance statistics for the last 4 batches. We used

the EC2 CloudWatch tools to monitor the performance. In particular, we captured

CPU utilization, network traffic and IOPS for each instance.

Fig. 7. Performance variation of PLINK tasks.

Although each PLINK task consists of similar computational complexity with al-

most same size of input data, we observed significant performance variation, as illus-

trated in Fig. 7. The averaged execution time is 200 seconds with a long tail of outli-

ers, and some special cases could take up to 1,000 seconds. Commonly, performance

variability exists in a large scale of distributed system. Shared resources and system

and network instability can lead to huge performance variation [3]. For our case, we

observed significant variations of IO access for PLINK tasks.

Fig. 8. Disk read operations per second.

Fig. 9. Disk write operations per second.

16

Fig. 10. Outbound network traffic of AFM gateway nodes.

Fig. 8 and Fig. 9 show the disk read and write statistics for compute servers, in

which each line with different color represents metrics for a single instance. Because

of the PLINK workload, write IO is an order of magnitude higher than read perfor-

mance. The metrics of different instances are correlated very well and it means the

workload on each instance is pretty similar. In particular, the write performance was

comparatively stable within the range of 200K and 400K. We believe this is because

the updates were first committed to local NVMe devices before being transferred to

the home site through AFM gateway. In comparison, averaged read operations chang-

es from around 22K to less 15K. This may be caused by unreliable long-haul network.

Fig. 10 presents the network traffic from Amazon to UQ through GPFS gateway at

the caching site, in which the orange line represents the operative gateway node and

the blue one is for the fail-over backup node. We can see that most remote data traf-

fics were managed by the operative gateway node. There are significant drops in the

last day of experiment. We assume they were caused by shared bandwidth competi-

tion from other public users. This resource contention also impacts the PLINK execu-

tion time at the last day, especially the performance of read IO.

6 Conclusions

Geographically distributed data processing pipelines are becoming common. The

stages of data intensive analysis can be accelerated using cloud computing with the

high throughput model and on-demand resource allocation. It is desired that existing

parallel applications can be offloaded into a multi-cloud environment without signifi-

cant modifications. To achieve this goal, this paper presents a global caching architec-

ture that provides a uniform storage solution to migrate data sets across different

clouds transparently. In particular, on-demand data movement is provided by taking

advantage of both temporal and spatial locality in geographical data pipelines. Coop-

erating with the dynamic resource allocation, our system can improve the efficiency

of large-scale data pipelines in multi-clouds. Our architecture provides a hierarchical

caching framework with a tree structure and the global namespace using the POSIX

file interface. The system is demonstrated by combining existing storage software,

including GPFS, AFM, and NFS. Parallel IO is supported directly to improve the

performance of scalable data analysis applications. Both block-based caching and file-

17

based data consistency are supported in the global domain. A platform independent

method is realized to allocate, instantiate and release the caching site with both com-

pute and storage clusters across different clouds. The case study of GWAS demon-

strates that our system can organize public resources from IaaS clouds, such as both

Amazon EC2 and HUAWEI Cloud, in a uniform way to accelerate massive bioinfor-

matics data analysis. In particular, the PLINK analysis was offloaded into the multi-

cloud environment without any modification and worked as if it was executed on a

local cluster. The performance evaluation demonstrates that our global caching archi-

tecture has successfully addressed its design goals.

ACKNOWLEDGMENTS

We thank Amazon and HUAWEI for contributing cloud resources to this research

project.

References

1. Amazon S3 Homepage, https://aws.amazon.com/s3/, last accessed 2018/11/30

2. Ansible Homepage, https://www.ansible.com/, last accessed 2018/11/30

3. Dean J. and Barroso L.: The Tail at Scale. Communications of the ACM, vol. 56, pp. 74-

80, 2013.

4. Kumar A., et al.: BwE: Flexible, Hierarchical Bandwidth Allocation for WAN Distributed

Computing. In: Proceedings of the 2015 ACM Conference on Special Interest Group on

Data Communication (SIGCOMM'15), London, 2015.

5. Rajendran A., et al.: Optimizing Large Data Transfers over 100Gbps Wide Area Network.

In: Proceedings of 13
th

 IEEE/ACM International Symposium on Cluster, Cloud, and Grid

Computing (CCGrid'13), Delft, 2013.

6. Thomson A., and J.Abadi D.: CalvinFS: Consistent WAN Replication and Scalable

Metadata Management for Distributed File Systems. In: Proceeding of the 13
th

 USENIX

Conference on File and Storage Techniques (FAST'15), CA, 2015.

7. Allen B., et al.: Globus Online: Radical Simplification of Data Movement via SaaS. The

University of Chicago, Technical Report. 2011.

8. Settlemyer B., et al.: A Technique for Moving Large Data Sets over High-Performance

Long Distance Networks. In: Proceedings of IEEE 27
th

 Symposium on Mass Storage Sys-

tems and Technologies (MSST'11), Denver, 2011.

9. Dropbox Homepage, https://www.dropbox.com, last accessed 2018/11/30

10. Abramson D., Carroll J., Jin C., and Mallon M.: A Metropolitan Area Infrastructure for

Data Intensive Science. In: Proceedings of IEEE 13
th

 International Conference on e-

Science (e-Science), Auckland, 2017.

11. Abramson D., Sosic R., Giddy J., and Hall B.: Nimrod: a tool for performing parametrised

simulations using distributed workstations. In: Proceedings of the 4
th

 IEEE International

Symposium on High Performance Distributed Computing, 1995.

12. Nygren E., Sitaraman R., and Sun J.: The Akamai Network: A Platform for High-

Performance Internet Applications, ACM SIGOPS Operating Systems Review archive,

Vol. 44(3), pp. 2-19, 2010.

18

13. Schmuck F., and Haskin R.: Gpfs: A shared-disk file system for large computing clusters.

In: Proceedings of the 1
st
 USENIX Conference on File and Storage Techniques (FAST),

2002.

14. Hupfeld F., et al.: The xtreemfs architecture: a case for object-based file systems in grids,

Journal of Concurrency and Computation, Vol. 20(17), pp. 2049-2060, 2008.

15. Khanna G. et al.: Using Overlays For Efficient Data Transfer Over Shared Wide-Area

Networks. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing

(SC'08), Austin, 2008.

16. IBM Spectrum Scale Homepage,

https://www.ibm.com/support/knowledgecenter/en/STXKQY_4.2.0, 2018/11/30

17. IBM, Active file management (AFM) Homepage,

https://www.ibm.com/support/knowledgecenter/en/STXKQY_4.2.0/com.ibm.spectrum.sca

le.v4r2.adv.doc/bl1adv_afm.htm, 2018/11/30

18. Reuter H.: Direct Client Access to Vice Partitions. AFS & Kerberos Best Practice Work-

shop 2009, CA, 2009.

19. Raicu I., Foster I., Zhao Y., Little P., Moretti C., Chaudhary A., and Thain D.: The Quest

for Scalable Support of Data-Intensive Workloads in Distributed Systems. In: Proceedings

of the 18
th

 ACM International Symposium on High performance Distributed Computing

(HPDC'09), Munich, 2009.

20. Raicu I., Zhao Y., Foster I., and Szalay A.: Accelerating Large-scale Data Exploration

through Data Diffusion. In: IEEE International Workshop on Data-Aware Distributed

Computing (DADC'08), 2008.

21. IOR Homepage, https://github.com/LLNL/ior, 2018/11/30

22. Bent J., et al.: Explicit Control in a Batch-Aware Distributed File System. In: Proceedings

of the 1st conference on Symposium on Networked Systems Design and Implementation

(NSDI'04), CA, 2004.

23. Corbett J., et al.: Spanner: Google’s globally distributed database. ACM Transactions on

Computer Systems (TOCS), Vol. 31(3-8), pp. 1–22, 2013.

24. Kubiatowicz J., et al.: OceanStore: An Architecture for Global-Scale Persistent Storage.

In: Proceedings of the 9
th

 International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS), 2000.

25. Morris J., et al.: Andrew: a distributed personal computing environment. Communications

of the ACM - The MIT Press scientific computation series, Vol. 29(3), pp. 184–201,1986.

26. Vahi K., et al.: Rethinking Data Management for Big Data Scientific Workflows. In: Pro-

ceedings of 2013 IEEE International Conference on Big Data, Silicon Valley, 2013.

27. Biven L.: Big Data at the Department of Energy’s Office of Science, 2
nd

 NIST Big Data

Public Working Group Workshop, 2017.

28. Pacheco L., et al.: GlobalFS: A Strongly Consistent Multi-Site File System. In: Proceed-

ings of IEEE 35
th

 Symposium on Reliable Distributed Systems (SRDS), Budapest, 2016.

29. Vitale M.: OpenAFS Cache Manager Performance. AFS & Kerberos Best Practice Work-

shop 2015, PA, 2015.

30. Microsoft Azure Homepage, https://azure.microsoft.com/en-us/, 2018/11/30

31. Hey T., Tansley S., and Tolle K.: The Fourth Paradigm: Data-Intensive Scientific Discov-

ery. Microsoft Corporation, 2012.

32. Eshel M., Haskin R., Hildebrand D., Naik M., Schmuck F., and Tewari R.: Panache: A

Parallel File System Cache for Global File Access. In: Proceedings of the 8
th

 USENIX

Conference on File and Storage Technologies (FAST'10), California, 2010.

19

33. Ardekani M. and Terry D.: A self-configurable geo-replicated cloud storage system. In:

Proceedings of the 11
th

 USENIX conference on Operating Systems Design and Implemen-

tation (OSDI'14), 2014.

34. Nextcloud Homepage, https://nextcloud.com, 2018/11/30

35. OpenAFS Homepage, https://www.openafs.org/, 2019/01/31

36. PLINK Homepage, http://zzz.bwh.harvard.edu/plink/, 2018/11/30

37. Sandberg R., Goldberg D., Kleiman S., Walsh D., and Lyon B.: Design and Implementa-

tion of the Sun Network File System, Summer USENIX Proc., 1985.

38. Tudoran R., Costan A., and Antoniu G.: OverFlow: Multi-Site Aware Big Data Manage-

ment for Scientific Workflows on Clouds. IEEE Transactions on Cloud Computing. Vol.

4-1, 2016.

39. Tudoran R., Costan A., Rad R., Brasche G., and Antoniu G.: Adaptive File Management

for Scientific Workflows on the Azure Cloud. In: Proceedings of 2013 IEEE International

Conference on Big Data, Silicon Valley, 2013.

40. R. Tudoran, A. Costan, R. Wang, L. Bouge, and G. Antoniu. Bridging Data in the Clouds:

An Environment-Aware System for Geographically Distributed Data Transfers. In: Pro-

ceedings of 14th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Com-

puting (CCGrid'14), Delft, 2013.

41. Dolev S., Florissi P., Gudes E., Sharma S., and Singer I.: A Survey on Geographically Dis-

tributed Big-Data Processing using MapReduce. IEEE Transactions on Big Data, 2017.

42. Rhea S., et al.: Pond: the OceanStore Prototype. In: Proceedings of the 2
nd

 USENIX Con-

ference on File and Storage Technologies (FAST'03), 2003.

43. Allcock W.: GridFTP: Protocol Extensions to FTP for the Grid. Global Grid ForumGFD-

R-P.020, 2003.

44. Allcock W., et al.: The Globus Striped GridFTP Framework and Server. In: Proceedings of

the 2005 ACM/IEEE Conference on Supercomputing (SC'05), 2005.

45. Kim Y., Atchley S., Vallee G., and Shipman G.: LADS: Optimizing Data Transfers using

Layout-Aware Data Scheduling. In: Proceedings of the 13
th

 USENIX Conference on File

and Storage Technologies (FAST'15), Santa Clara, 2015.

46. Wu Z., et al.: SPANStore: Cost-effective Geo-replicated Storage Spanning Multiple Cloud

Services. In: Proceedings of the 24
th

 ACM Symposium on Operating Systems Principles

(SOSP’2013), 2013.

