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Abstract. As cloud computing has become the de facto standard for big data 

processing, there is interest in using a multi-cloud environment that combines 

public cloud resources with private on-premise infrastructure. However, by de-

centralizing the infrastructure, a uniform storage solution is required to provide 

data movement between different clouds to assist on-demand computing. This 

paper presents a solution based on our earlier work, the MeDiCI (Metropolitan 

Data Caching Infrastructure) architecture. Specially, we extend MeDiCI to sim-

plify the movement of data between different clouds and a centralized storage 

site. It uses a hierarchical caching system and supports most popular infrastruc-

ture-as-a-service (IaaS) interfaces, including Amazon AWS and OpenStack. As 

a result, our system allows the existing parallel data intensive application to be 

offloaded into IaaS clouds directly. The solution is illustrated using a large bio-

informatics application, a Genome Wide Association Study (GWAS), with Am-

azons AWS, HUAWEI Cloud, and a private centralized storage system. The 

system is evaluated on Amazon AWS and the Australian national cloud. 

Keywords: Cloud, Big Data, Caching, Data Migration. 

1 Introduction 

Presently, many big data workloads operate across isolated data stores that are dis-

tributed geographically and manipulated by different clouds. For example, the typical 

scientific data processing pipeline [27][41] consists of multiple stages that are fre-

quently conducted by different research organizations with varied computing de-

mands. Accordingly, accelerating data analysis for each stage may require computing 

facilities that are located in different clouds. Between different stages of the geo-

graphical data pipeline, moving a large amount of data across clouds is common 

[5][38]. This type of multi-cloud environment can consist of resources from multiple 

public cloud vendors, such as Amazon AWS [1] and Microsoft Azure [30], and pri-

vate data centers. Multi-cloud is used for many reasons, such as best-fit performance, 

increased fault tolerance, lower cost, reduced risk of vendor lock-in, privacy, security, 

and legal restrictions. Different from hybrid-cloud, however, data silos in multi-cloud 

are isolated by varied storage mechanisms of different vendors. This complicates 
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applying on-demand computing for scientific research across clouds. Although com-

putation offloading into clouds is standardized with virtual machines, a typical data 

processing pipeline faces multiple challenges in moving data between clouds. First, a 

uniform way of managing and moving data is required across different clouds. Se-

cond, the network connections for inter-clouds and intra-cloud are typically different 

in terms of bandwidth and security. Moving a large amount of data between centers 

must utilize critical resources such as network bandwidth efficiently, and resolve the 

difficulties of latency and stability issues associated with long-haul networks. Third, 

users have to maintain the consistency of duplicated copies between silos with differ-

ent storage mechanisms. Fourth, data migration between the stages of a pipeline needs 

to cooperate efficiently with computing tasks scheduling. 

In this work, we propose a hierarchical global caching architecture across geo-

graphical data centers of different clouds. Such a system supports automatic data mi-

gration to cooperate on-demand Cloud computing. It unifies distant data silos using a 

file system interface (POSIX) and provides a global namespace across different 

clouds, while hiding the technical difficulties from users. Data movement between 

distant data centers is made automatic using caching. Our high performance design 

supports massive data migration required by scientific computing. Our previous work, 

called MeDiCI [10], has been shown to work well in an environment consisting of 

private data centers dispersed across the metropolitan area. In this paper, we extend 

MeDiCI into the multi-cloud environment that consists of most popular infrastructure-

as-a-service (IaaS) cloud platforms, including Amazon AWS and OpenStack-based 

public clouds, and Australian data centers of NeCTAR (The National eResearch Col-

laboration Tools and Resources). Existing parallel data intensive applications are 

allowed to run in the virtualized resources directly without significant modifications. 

This paper mainly discusses the following innovations: 

• A global caching architecture that moves data across clouds in accordance 

with on-demand compute and storage resource acquirement; 

• A demonstration of the proposed architecture using parallel file system com-

ponents; 

• A platform independent mechanism that manages the system across different 

IaaS clouds, including Amazon AWS and OpenStack-based clouds; 

• Demonstrating our solution using a Genome Wide Association Study with 

resources from Amazon Sydney and a centralized storage site in Brisbane. 

The rest of the paper is organized as follows. Section 2 provides an overview of re-

lated work and our motivation. Section 3 introduces our proposed global caching 

architecture. Sections 4 describe the realization of our storage architecture. Section 5 

provides a detailed case study in Amazon EC2 and HUAWEI Cloud with according 

performance evaluation. Our conclusions follow in Section 6. 

2 Background 

Massive data analysis in the scientific domain [27][31] needs to process data that is 

generated from a rich variety of sources, including scientific simulations, instruments, 
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sensors, and Internet services. Many data intensive applications are embarrassingly 

parallel and can be accelerated using the high throughput model of cloud computing. 

Therefore, complementing private data centers with on-demand resources drawn from 

multiple (public) clouds is frequently used to tolerate compute demand increases. 

However, offloading computation into clouds not only requires acquiring compute 

resources dynamically, but also moving target data into the allocated virtual ma-

chines. Most existing storage solutions are not designed for a multi-cloud environ-

ment. In particular, they often require users to move data between processing steps of 

a geographical data processing pipeline explicitly. In addition, many existing methods 

do not directly support parallel IO to improve the performance of scalable data analy-

sis. This section reviews the existing methods and motivates our solution. 

“Data diffusion” [19][20], which can acquire compute and storage resources dy-

namically, replicate data in response to demand, and schedule computations close to 

data, has been proposed for Grid computing. In the cloud era, the idea has been ex-

tended to scientific workflows that schedule compute tasks [41] and move required 

data across the global deployment of cloud centers. Both data diffusion and cloud 

workflows rely on a centralized site that provides data-aware compute tasks schedul-

ing and supports an index service to locate data sets dispersed globally. In contrast, 

our model suits a loosely coupled working environment in which no central service of 

task scheduling and data index is required. Actually, each department controls its own 

compute resources and the collaboration between departments relies on shared data 

sets that are stored in a central site for long-term use. Our previous solution, MeDiCI 

[10], works well on dedicated resources. In this paper, we extend MeDiCI to a multi-

cloud environment with dynamic resources and varied storage mechanisms. 

A substantial portion of our work needs to move data across different clouds effi-

ciently. Cloud storage systems, such as Amazon S3 [1] and Microsoft Azure [30], 

provide specific methods to exchange data across centers within a single cloud, and 

mechanisms are available to assist users to migrate data into cloud data centers. For 

instance, the Microsoft Azure Data Factory and the AWS Data Pipeline support data-

driven workflows in the cloud to orchestrate and to automate data movement and data 

transformation. These cloud specific solutions mainly handle data in the format of 

cloud objects and database. Some other workflow projects combine cloud storage, 

such Amazon S3, with local parallel file systems to provide a hybrid solution. For 

example, a staging site [26] is introduced for Pegasus Workflow Management System 

to convert between data objects and files and supports both Cloud and Grid facilities. 

In comparison, some cloud backup solutions, such as Dropbox [9], NextCloud [34], 

and SPANStore [46], provide seamless data access to different clouds. However, most 

of these cloud storage solutions do not directly support parallel IO that is favored by 

embarrassing parallel data intensive applications. 

Recent projects support directly transferring files between sites to improve overall 

system efficiency [39]. For example, OverFlow [40][38] provides a uniform storage 

management system for multi-site workflows that utilize the local disks associated 

with virtual machine instances. It extends replication service to handle data transfer 

for inter-site and intra-site traffic using different protocols and mechanisms. This type 
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of customized storage solution is designed to cooperate with the target workflow 

scheduler using a set of special storage APIs. 

The distributed file system provides a general storage interface widely used by al-

most all parallel applications. How to support a distributed file system in the global 

environment has been investigated extensively [24][42][12][33][14][23][6][28]. Typi-

cally, the tradeoff between performance, consistency, and data availability must be 

compromised appropriately to address the targeted data access patterns. Most general 

distributed file systems designed for the global environment focus on consistency at 

the expense of performance. The Andrew File System (AFS) [25] federates a set of 

trusted servers to provide a consistent and location independent global namespace to 

all of its clients. The AFS caching mechanism allows accessing files over a network 

as if they were on a local disk. OpenAFS [35] is an open source software project im-

plementing the AFS protocol. Exposing clustered file systems, such as GPFS and 

Lustre, to personal computers using OpenAFS has been investigated [18]. Frequently, 

AFS caching suffers from performance issues due to overrated consistency and a 

complex caching protocol [29]. Overall, AFS was not designed to support large-scale 

data movement required by on-demand scientific computing. The similar idea of us-

ing a global caching system to transfer data in a wide area was also investigated by 

Content Delivery Networks (CDN) [12]. CDN caches site content at the edge of the 

Internet, close to end users, in order to improves website performance. In comparison, 

BAD-FS [22] and Panache [32] improve data movement onto remote computing clus-

ters distributed across the wide area, in order to assist dynamic computing resource 

allocation. BAD-FS supports batch-aware data transfer between remote clusters in a 

wide area by exposing the control of storage policies such as caching, replication, and 

consistency and enabling explicit and workload-specific management. Panache is a 

scalable, high-performance, clustered file system cache that supports wide area file 

access while tolerating WAN (Wide Area Network) latencies. It transfers remote files 

in parallel using the NFS protocol, instead of other batch mode data movement solu-

tions, such as GridFTP [43] and GlobusOnline [7]. Panache maintains the consistency 

of both meta-data and files.  

Our previous work, MeDiCI [10], builds on AFM [17], which is a commercial ver-

sion of Panache. MeDiCI constructs a hierarchical caching system using AFM and 

parallel file systems. MeDiCI exploits temporal and spatial locality to move data on 

demand in an automated manner across our private data centers that spans the metro-

politan area. With this paper, we extend MeDiCI to 1) unify the varied storage mech-

anisms across clouds using the POSIX interface; and 2) provide a data movement 

infrastructure to assist on-demand scientific computing in a multi-cloud environment. 

3 Design  

A geographical data processing pipeline may consist of multiple stages and each stage 

could be executed in different data centers that have appropriate computing facilities. 

Each stage needs to process both local data and remote files, which require moving 

data from a remote center to the local site. After each stage is finished, the migrated 
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data can be deleted according to the specific request, while the generated output may 

be collected. Frequently, a central storage site keeps long-term use data for pipelines. 

The common data access patterns of these pipelines include data dissemination, col-

lection, and aggregation [38]. In addition, concurrent data write operations across 

different phases are very rare.  

Our global caching infrastructure aims to support this type of data pipeline that are 

performed using compute resources allocated dynamically in IaaS clouds. Our system 

provides a POSIX interface and supports parallel IO to the data intensive applications 

running in a virtual cluster. With this storage infrastructure, applications do not have 

to be modified and can be offloaded into clouds directly. 

In particular, this global caching architecture accommodates on-demand data 

movement across different clouds to meet the following requirements: 1) a unified 

storage solution for multi-cloud; 2) automatic on-demand data movement to fetch data 

from a remote site; 3) facilitating parallel IO for high performance computing direct-

ly; 4) supporting data access patterns commonly used; and 5) efficiently utilizing the 

network bandwidth to transfer a large amount of data over distant centers. 

 

Fig. 1. The hierarchical caching architecture across different clouds. 

Our design principle builds on the following key factors. 

A global namespace with a POSIX interface: most high performance computing 

applications rely on a traditional file interface, instead of the cloud objects. Exposing 

a file interface can save the extra effort of converting between files and objects and it 

works with many existing scientific applications seamlessly. Furthermore, the global 

namespace across different clouds allow multiple research organizations share the 

same set of data without concerning its exact location. 

A hierarchical caching architecture: the caching architecture aims to migrate re-

mote data to locate sites in an automated manner without users’ direct involvement. In 

addition, it takes advantage of data location to save unnecessary data transfer. 

Data consistency model for the target data access patterns: appropriate data con-

sistency model is critical for the global performance and latency perceived by applica-

tions. Our consistency model supports common data access patterns, such as data 

dissemination and data collections.  
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Network optimization for distant connections: our system should support optimized 

global network path with multiple hops, and improve the usage of limited network 

bandwidth. 

The expense of acquiring virtual clusters is out of the scope of this paper. In partic-

ular, we expect that users should be aware of whether the advantage of using a remote 

virtual cluster offsets the network costs caused by significant inter-site data transfer. 

3.1 Hierarchical Global Caching Architecture 

Many distributed storage systems use caching to improve performance by reducing 

remote data access. Different from other work, our global caching architecture uses 

caching to automate data migration across distant centers. The proposed caching 

model assumes that each data set in the global domain has a primary site and can be 

cached across multiple remote centers using a hierarchical structure, as exemplified in 

Fig. 1, in which the primary site is the central storage center for keeping long-term 

use data. Each data set has a primary copy maintained by its primary site and multiple 

cached copies maintained by caching sites. The primary copy and cached copies form 

a tree structure, in which the primary copy is the root. As illustrated in Fig. 1, the 

primary copy is maintained by Cloud A on site a and it is cached in Cloud B and C 

respectively. In Cloud C, the data is cached on two sites, c and d. 

  

Fig. 2. Data movement path. 

Each file in this system can have multiple replicas across data centers that are iden-

tified using the same logical name. Within a single data site, a replica is controlled by 

the local storage solution, typically a parallel file system, which may use data duplica-

tion to improve performance. All the copies in a single center are taken as a single 

logical copy. Across data centers, duplications of logical replicas and their consisten-

cy are managed by the global caching architecture. Users are not aware of the exact 

location for each data set. However, data is actually moved between geographically 

distributed caching sites according to data processing requirements, in order to lower 

the latency to frequently accessed data. The migrated data set typically stays locally 

for the term of use, instead of permanently. The basic data migration operations are 

supported: 1) fetching remote files to the local site; and 2) sending local updates to a 

remote site. These two basic operations can be composed to support the common data 

access patterns, such as data dissemination, data aggregation and data collection. 

Primary Copy 

Level 1 Cache Level 1 Cache 

Level 2 Cache 
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Data movement is triggered on-demand, although pre-fetch can be used to hide the 

latency according to the exact data access patterns. Cache capacity on each site is 

configurable, and an appropriate data eviction algorithm is used to maximize data 

reuse. In the hierarchical caching architecture, data movement only occurs between 

neighbor layers. Fig. 2 illustrates the data movement path for the caching architecture 

of Fig. 1. The top tier caching serves any requested data from the next layer of cache 

in line. When a cache miss occurs, the request will be forwarded to the next tier of the 

hierarchical cache, until the primary site is reached. Typically, a read operation moves 

data from the primary site to the targeted caching site layer by layer, while writes are 

committed in a reverse order to the primary site. 

The hierarchical structure enables moving data through intermediate sites. This 

layered caching architecture can be adopted in two scenarios: 1) improving the usage 

of local data copies while decreasing remote data access; and 2) data movement 

adapted to the global topology of network connections. The exact path to transfer data 

from the source site to the destination center should be optimized, because the direct 

network path between two sites may not be the fastest one. In particular, all of the 

available global network paths should be examined to take advantage path and file 

splitting [15]. Sometime, adding an intermediate hop between source and destination 

sites performs better than the direct link. This feature can be achieved by using the 

hierarchical caching structure naturally. Transferring data via an intermediate site 

only need to add the cached directory for the target data set, as described in section 

3.2. For example, in Fig. 1, assume site a has poor direct network connection with site 

d, but site c connects both a and d with high bandwidth network. Therefore, site a can 

move data to d using site c as an intermediate hop with the layered caching structure. 

3.2 Global Namespace and POSIX File Interface 

With a geographical data pipeline, we envisage that different cloud facilities can take 

part in the collaboration and exit dynamically. Distant collaborative sites should be 

loosely coupled. Accordingly, we need a flexible method to construct the storage 

system across different clouds. In order to allow data to be exchanged transparently 

across different clouds, a consistent and uniform namespace needs to span a set of 

distant centers. In addition, different from many other systems, our caching architec-

ture does not maintain a global membership service that monitors whether a data cen-

ter is online or offline. This saves the overhead of keeping the location of each piece 

of data in multi-cloud. 

The global namespace is provided using the POSIX file interface, and is construct-

ed by linking the remote data set to a directory in the local file system. In other words, 

a local directory is specified to hold the cache for the remote data set. Multiple remote 

data sets, which may originate from different data centers, can be stored in different 

directories on the same site. Therefore, a POSIX file interface unifies storage access 

for both local and remote data. The cached remote directory has no difference from 

other local directories, except its files are copied remotely whenever necessary.  
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3.3 Storage Organization of a Caching Site 

In each site, a local parallel file system is used to maintain both cached remote data 

and local files accessed by the parallel applications running in the virtual cluster. The 

local parallel file system can be installed on dedicated storage resources to work as a 

shared storage service, or located on storage devices associated with the same set of 

compute resources allocated for the data analysis job. The first option maintains 

cached data for long-term usage, while the second option suits short-term data 

maintenance, because data storage is normally discarded after computing is finished. 

The storage media used in each site can be multi-tiered, using varied storage devices 

such as SSD and hard disk drives. How to organize the storage media to host the par-

allel file system is out of the scope of this paper.  

3.4 Data Consistency  

To accommodate common data access patterns used in typical data analysis pipelines, 

we adopt a consistency model to prioritize data access performance while providing 

acceptable consistency. In particular, data consistency within a single site is guaran-

teed by the local parallel file system. Across distant sites, a weak consistency seman-

tic is supported across shared files and a lazy synchronization protocol is adopted to 

save unnecessary remote data movement. Remote files are copied only when they are 

accessed. However, a prefetching policy can be specified to hide the latency of mov-

ing data, such as copying neighbor files when one file in a directory is accessed. The 

validity of cached files is actively maintained by each caching site. The validity is 

verified both periodically and when directories and files are accessed. In addition, 

users can select an appropriate policy for output files, such as write-through or write-

back, to optimize performance and resilience.  

The updates on large files are synchronized using a lazy consistency policy, while 

meta-data is synchronized using a prompt policy. Assuming each caching site verifies 

its validation every f seconds, for an n level caching hierarchy, the protocol guaran-

tees that the whole system reaches consistency on updated meta-data within 2n•f se-

conds. This consistency model supports data dissemination and collections very well 

across distant sites on huge files, according to our experience. 

3.5 Component Interaction 

Fig. 3 illustrates the major components that realize the global caching architecture 

across distant sites. A POSIX file interface spans different clouds to provide a uni-

form storage access interface. In each site, different native parallel file system can be 

used and a file system adaptor provides a general POSIX-compliant interface. The 

Global Caching module maintains the connections between each cached data set and 

its parent copy. It coordinates with its peer on the remote site to move requested files 

according to user requests and to synchronize updates. The Global Caching module 

builds on top of the local native parallel file system by organizing the local storage 

space to maintain the duplicated copies of remote files. It intercepts local file requests 
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and moves remote data transparently in case the requested file is not available locally. 

Therefore, it exposes the same POSIX-compliant file interface to applications. Ac-

cordingly, the global namespace is provided using the tree-based directory structure 

and seamlessly integrates into the namespace of local file system. The Consistency 

module coordinates the data synchronization according to user specified configura-

tions. 

 

Fig. 3. Major components in the global caching architecture. 

4 System Demonstrations 

We are currently building on a prototype of the global caching architecture for testing 

and evaluation purpose. We reuse existing file system components as much as possi-

ble to minimize the implementation effort. The caching system builds on GPFS [13], 

Active File Management (AFM) [17], and the NFS protocol [37]. We realized a plat-

form-independent method to allocate, instantiate and release the caching instance with 

the target compute cluster across different IaaS clouds in an on-demand manner. 

4.1 Existing Components 

GPFS is a parallel file system designed for clusters, but behaves likes a general-

purpose POSIX file system running on a single machine. GPFS uses the shared-disk 

architecture to achieve extreme scalability, and supports fully parallel access both to 

file data and metadata. Files are striped across all disks, while distributed locking 

synchronizes accesses to shared disks. Our caching system uses the GPFS product, 

(also known as IBM Spectrum Scale [16]), to hold both local and remote data sets. 

As a component of IBM Spectrum Scale, AFM is a scalable, high-performance, 

clustered file system cache across a WAN. It provides a POSIX-compliant interface 

with disconnected operations, persistence across failures, and consistency manage-

ment. AFM transfers data from remote file systems and tolerates latency across long 

haul networks using the NFS protocol. Parallel data transfer is supported with concur-

rent NFS connections. 

Fig. 4 illustrates an instance of the global caching site. The GPFS cluster provides 

data service to the compute cluster. Each GPFS cluster is equipped with an AFM 

component. Each server is attached multiple network shared disks. A configuration of 

mirror redundancy is shown in Fig. 4. The number of servers and associated disks 

Centre A 

G
lo

b
al N

am
esp

ace 

Global Caching System 

Moving Data 

	

C
o
n
sisten

cy
 

Global Caching 

File system adaptor 

Native file system 

POSIX File Interface POSIX File Interface 

Global Caching 

File system adaptor 

Native file system 

Global Caching 

File system adaptor 

Native file system 

Centre B Centre C 

Cached copy Cached copy Primary copy 

Moving Data 

	



10 

depends on the total storage capacity needed. The number of gateway nodes deter-

mines the aggregated bandwidth that can be achieved to transfer data in and out from 

the cluster. Quorum managers maintain data consistency in the failure cases. The 

compute cluster consists of multiple workers and a job scheduler with a login node. 

  

Fig. 4. An instance of the global caching site. 

4.2 Platform-independent System Resource Management 

The global caching system aims to support different IaaS cloud systems and provides 

a platform-independent way of managing resource usage, including compute and 

storage resource allocation, instantiation and release. Our primitive implementation 

handles Amazon EC2, HUAWEI Public Cloud and OpenStack-based clouds. We 

realized a tool that supports different cloud orchestration methods, such as Cloud-

Formation in EC2 and Heat in OpenStack and HUAWEI Cloud, to automate the allo-

cation, release, and deployment of both compute and storage resources for building 

the caching site. To configure each virtual node and storage resources in an automated 

manner, we use Ansible [2] scripts. Both CloudFormation and Heat support Resource 

Tags to identify and categorize cloud resources. Our automation tool utilizes this fea-

ture to generate Ansible inventory and variables programmatically for system installa-

tion and configuration. 

Table 1. Cloud resources in Amazon EC2, HUAWEI Cloud, and OpenStack. 

Resources Amazon EC2 HUAWEI Cloud OpenStack 

Virtual machine Instance  Elastic Compute Server Nova Instance 

OS Images AMI Glance Glance 

Block Storage EBS Elastic Volume Service Cinder 

Private Network VPC VPC Neutron network 

Public IP Public IP Elastic IP Floating IP 

AAA SSH key pairs SSH key pairs SSH key pairs 
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In order to accommodate a consistent caching system deployment over different 

clouds, according network resources, Authentication, access and authorization 

(AAA), virtual machines, and storage instances must be supported. Table 1 lists sup-

ported resources in Amazon EC2, HUAWEI Cloud, and OpenStack. 

Fig. 5 illustrates the typical deployment in both HUAWEI and Amazon clouds. In 

HUAWEI Cloud, shown in the left half of Fig. 5, both the compute and GPFS clusters 

are instantiated using Elastic Compute Server (ECS). Each GPFS server is attached 

with two Elastic Volume Service (EVS) disks. All of the ECS servers are connected 

with a Virtual Private Cloud (VPC) that communicates with the Internet via a NAT 

gateway. Each GPFS gateway node is equipped with an Elastic IP (EIP) to access the 

Internet directly. In EC2, different resources are used to provide the similar configura-

tion, as illustrated in the right half of Fig. 5. Our automation tool allows for and ac-

commodates configurable parameters for the type and number of instances as well as 

block devices attached, operating system image and other tunable parameters.   

4.3 Data Transfer Optimization 

Achieving high performance data transfer in a WAN requires tuning the components 

associated with the distant path, including storage devices and hosts in both source 

and destination sites and network connections [4][8][45]. Critical system parameters 

such as the TCP buffer size and the number of parallel data transfers in AFM must be 

optimized. In most cases, it is necessary to transfer the data with multiple Socket con-

nections in order to utilize the bandwidth of the physical link efficiently. Besides 

moving multiple files concurrently, parallel data transfer must support file split to 

transfer a single large file. With AFM, parallel data transfer can be achieved at differ-

ent levels: 1) multiple threads on a single gateway node; 2) multiple gateway nodes. 

Each option suits for different scenario. For example, in case the Network Interface 

Card (NIC) on a single gateway node provides enough bandwidth, the first option is 

enough. In case there is restriction on the NIC bandwidth, multiple gateway nodes can 

be used. AFM supports parallel data transfer with configurable parameters to adjust 

the number of concurrent read/write threads, and the size of chunk to split a huge file. 

With Amazon EC2, we use a single gateway node with multiple threads to parallel-

ize data transfer. However, with HUAWEI Cloud, each EIP has a bandwidth limita-

tion. To maximize the performance of copying remote files, multiple gateway nodes 

are used in the cache site. Accordingly, in the home site the same number of NFS 

servers are deployed. The mapping between them is configured explicitly with AFM.  

4.4 Data Consistency 

The following data consistency modes are provided to coordinate concurrent data 

access across distant centers with the assistance of AFM: 

• Read Only: each caching site can only read the cached copies, but cannot 

update them. 

• Single Writer: only a single data site updates the cached file set, and the up-

dates are synchronized to other caching sites automatically. 
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• Concurrent Writer: multiple writers update the same file with application 

layer coordination. The updates are synchronized without users interference. 

AFM allows data to be cached at the block level, while data consistency is main-

tained per file. When reading or writing a file, only the accessed blocks are fetched 

into a local cache. When the file is closed, the dirty blocks are written to the local file 

system and synchronized remotely to ensure a consistent state of the file. 

 

 

 Fig. 5. The deployment of a caching instance in HUAWEI Cloud and Amazon EC2. 

5 Case Study and Performance Evaluation 

We use a Genome Wide Association Study (GWAS) as an application driver to show 

how to use our global caching architecture to assist on-demand scientific computing 

across different clouds. GWAS are hypothesis-free methods to identify associations 

between regions of the genome and complex traits and disease. This analysis was 

performed on data from the Systems Genomics of Parkinson's Disease consortium, 

which has collected DNA methylation data on about 2,000 individuals. This study 

aimed to test how genetic variation alters DNA methylation, an epigenetic modifica-

tion that controls how genes are expressed, while the results are being used to under-

stand the biological pathways through which genetic variation affects disease risk.  

The work totally conducts 3.3 x 10
12

 statistical tests using the PLINK software 

[36]. The workload is essentially embarrassingly parallel and does not require high 

performance communication across virtual machines within the cloud. The data to be 

analyzed, around 40GB in total, is stored in NeCTAR’s data collection storage site 

located in the campus of the University of Queensland (UQ) at Brisbane. The input 

data is moved to the virtualized clusters, acquired in Amazon EC2 and HUAWEI 

Cloud, as requested. In addition, we can control the size of the cloud resource, for 

both the compute and GPFS clusters, according to our testing requirements. 
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5.1 System Deployment 

As shown in Fig. 6, virtualized compute clusters acquired from EC2 and HUAWEI 

clouds respectively process input data stored in Brisbane. Each instance, including 

both compute and GPFS clusters, is created using the automation tool described pre-

viously. The size of each instance was selected to make the best usage of our availa-

ble credit. The EC2 instance is created with a single VPC located in Sydney availabil-

ity zone. The HUAWEI instance consists of two layers. The first layer is a caching 

only site located in Beijing and the second layer consists of both caching and compute 

clusters located in Shanghai. The EC2 and HUAWEI resources connected to the cen-

tral storage site in Brisbane via the global caching architecture. The data transferred 

between these data sites is achieved using NFS connections and AFM caching. Typi-

cally, AFM NSD protocol outperforms NFS. However, due to the security concern 

occurred in the public network, we could only use NFS. The global caching system 

provided local access to data even though it was actually stored in NeCTAR, and the 

necessary files were fetched transparently on demand. Likewise, output files were 

written back to NeCTAR without the user being aware. Therefore, the application was 

identical to as if it was executed on a local cluster without any modification. 

In the EC2 cluster, the Nimrod [11] job scheduler was used to execute 500,000 

PLINK tasks, spreading the load across the compute nodes and completing the work 

in three days. Overall, approximately 60 TBs of data were generated by the experi-

ment and sent back to Brisbane for long-term storage and post-processing.  

 

Fig. 6. The deployment of the global caching architecture for GWAS case study.  

With the hierarchical caching structure in HUAWEI cloud, the input data was 

moved from Australia to Beijing first and then copied to Shanghai center. Due to 

credit limitation, no significant compute jobs were executed in HUAWEI Cloud. 

5.2 AWS EC2 Instance Selection 

We investigated the appropriate AWS instance for our EC2 experiment. Due to the 

constraints of time and cost, we could not exhaustively explore all the available in-

stances. We used a holistic approach to identify which instance types provide optimal 
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performance for different roles. Briefly, with the option of network-attached storage, 

instance types, such as m4, could not provide sufficient EBS bandwidth for GPFS 

Servers. Therefore, we examined the instances associated with the ephemeral storage 

of local block devices. However, the d2 series, namely the d2.8xlarge type, experi-

enced hardware and underlying infrastructure reliability issues. Finally, we used the i3 

instance types, i3.16xlarge, for the GPFS cluster that provided 25 Gbit/sec network 

with the ephemeral NVMe class storage, and had no reliability issues. For the com-

pute cluster, we selected the compute-optimized flavours, c5.9xlarge. It had a dedi-

cated 10 Gbit/sec bandwidth with Intel Xeon Skylake CPUs. 

Table 2. Configurations of Amazon EC2 Testing. 

Type of nodes Instances Count Details 

Nimrod worker c5.9xlarge 25 750 Xeon Skylake cores in total. 

AFM Gateway i3.16xlarge 2 Each instance is equipped with  

GPFS Quorum i3.16xlarge 3 25 Gbit/sec network bandwidth 

GPFS Server i3.16xlarge 10 and 8 x 1.9TB NVME. 

To determine instance counts, we matched aggregated worker bandwidth to GPFS 

Server bandwidth to satisfy a fully balanced IO path. Further, we tested a small scale 

of the PLINK workload to estimate run time per job and then sized our virtual cluster 

to execute the full workload within ~3 days. The final configuration is listed in Table 

2. Totally, 750 Nimrod worker threads were launched on the compute cluster. 

5.3 Network Transfer Optimization 

The network between AWS Sydney and UQ is 10Gbps with around 18.5ms latency. 

The connection is under a peering arrangement between the national research network 

provider, AARNET, and Amazon. The network is shared with other academic and 

research sector AARNET partners. Therefore, our configuration aims to maximize the 

effective bandwidth. For this case, a single active gateway node was used with 32 

AFM read/write threads at the cache site. In comparison, the default option is just one 

read/write thread. TCP buffers were tuned to improve performance at both source and 

destination sites. The home NFS server currently serves production workloads and 

requires 4,096 NFS daemons to service this workload. With these optimizations in 

place, we achieved about 2 Gbps, which is 20% of the peak bandwidth on the shared 

public link. The total amount of data moved from UQ to Amazon Sydney was 40GB, 

but the amount of data moved back to our datacenter (home) was 60TB in total.  

5.4 Performance Evaluation 

During the 3 days of  experiment, system utilization was on average about 85~92% on 

each node, with the I/O peaking at about 420,000 input and 25,000 output operations 
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per second (IOPS). The total 500,000 tasks were launched in 5 batches sequentially. 

This allowed us to optimize the system configuration while monitoring the progress 

of computing and expense used. Actually, the system was tuned in the first batch. 

Therefore, we only present the performance statistics for the last 4 batches. We used 

the EC2 CloudWatch tools to monitor the performance. In particular, we captured 

CPU utilization, network traffic and IOPS for each instance.  

 

Fig. 7. Performance variation of PLINK tasks. 

Although each PLINK task consists of similar computational complexity with al-

most same size of input data, we observed significant performance variation, as illus-

trated in Fig. 7. The averaged execution time is 200 seconds with a long tail of outli-

ers, and some special cases could take up to 1,000 seconds. Commonly, performance 

variability exists in a large scale of distributed system. Shared resources and system 

and network instability can lead to huge performance variation [3]. For our case, we 

observed significant variations of IO access for PLINK tasks. 

 

Fig. 8. Disk read operations per second. 

 

Fig. 9. Disk write operations per second. 
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Fig. 10. Outbound network traffic of AFM gateway nodes. 

Fig. 8 and Fig. 9 show the disk read and write statistics for compute servers, in 

which each line with different color represents metrics for a single instance. Because 

of the PLINK workload, write IO is an order of magnitude higher than read perfor-

mance. The metrics of different instances are correlated very well and it means the 

workload on each instance is pretty similar. In particular, the write performance was 

comparatively stable within the range of 200K and 400K. We believe this is because 

the updates were first committed to local NVMe devices before being transferred to 

the home site through AFM gateway. In comparison, averaged read operations chang-

es from around 22K to less 15K. This may be caused by unreliable long-haul network.  

Fig. 10 presents the network traffic from Amazon to UQ through GPFS gateway at 

the caching site, in which the orange line represents the operative gateway node and 

the blue one is for the fail-over backup node. We can see that most remote data traf-

fics were managed by the operative gateway node.  There are significant drops in the 

last day of experiment. We assume they were caused by shared bandwidth competi-

tion from other public users. This resource contention also impacts the PLINK execu-

tion time at the last day, especially the performance of read IO. 

6 Conclusions 

Geographically distributed data processing pipelines are becoming common. The 

stages of data intensive analysis can be accelerated using cloud computing with the 

high throughput model and on-demand resource allocation. It is desired that existing 

parallel applications can be offloaded into a multi-cloud environment without signifi-

cant modifications. To achieve this goal, this paper presents a global caching architec-

ture that provides a uniform storage solution to migrate data sets across different 

clouds transparently. In particular, on-demand data movement is provided by taking 

advantage of both temporal and spatial locality in geographical data pipelines. Coop-

erating with the dynamic resource allocation, our system can improve the efficiency 

of large-scale data pipelines in multi-clouds. Our architecture provides a hierarchical 

caching framework with a tree structure and the global namespace using the POSIX 

file interface. The system is demonstrated by combining existing storage software, 

including GPFS, AFM, and NFS. Parallel IO is supported directly to improve the 

performance of scalable data analysis applications. Both block-based caching and file-
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based data consistency are supported in the global domain. A platform independent 

method is realized to allocate, instantiate and release the caching site with both com-

pute and storage clusters across different clouds. The case study of GWAS demon-

strates that our system can organize public resources from IaaS clouds, such as both 

Amazon EC2 and HUAWEI Cloud, in a uniform way to accelerate massive bioinfor-

matics data analysis. In particular, the PLINK analysis was offloaded into the multi-

cloud environment without any modification and worked as if it was executed on a 

local cluster. The performance evaluation demonstrates that our global caching archi-

tecture has successfully addressed its design goals.  
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