

Embedded Nimrod

Straightforward HTC in HPC environments

October 22, 2019

Zane van Iperen David Green Hoang Nguyen David Abramson

Research Computing Centre University of Queensland

High Throughput Computing (HTC)

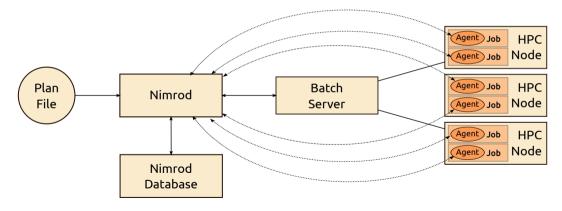
- HTC High Throughput Computing
 - Large quantities, small-footprint, loosly-coupled
- HPC High Performance Computing
 - Longer walltimes, tightly-coupled (MPI), etc.
- Significant overlap
- Classic HTC Example: Parameter Sweeps
 - Single task
 - Run many times with different parameter combinations

HTC on HPC

- Swarms of jobs overloading the scheduler (PBSPro)
- Were mostly HTC-style jobs
- Job Arrays weren't enough.
- Run-on effects
 - Resource fragmentation
- Scheduling and setup overhead can be longer than the job itself

Embedded Nimrod

- Leverages the parameter sweep and execution engine of Nimrod/G,
- Bridges the gap between HTC and HPC,
- Can run millions of jobs in one fell swoop,
- Optimises job placement,
- Has a minimal learning curve.


Nimrod/G

- Nimrod distributing computing toolkit.
- Nimrod/G the "grid" scheduler.
- Can dispatch work over resources such as HPC clusters and cloud infrastructure.
- Uses agent-based execution model.

Infrastructure – Traditional Nimrod/G


Infrastructure – Traditional Nimrod/G

Problems:

- Significant amount of setup and configuration required:
 - Database (PostgreSQL/SQLite3)
 - Message Queue (RabbitMQ/Apache Qpid)
 - The cluster itself
- Need to convert the job script to a Nimrod Planfile
- Not the best use of Researchers' time

Infrastructure – Embedded Nimrod

Infrastructure – Embedded Nimrod

Pros:

- Handles all setup and configuration behind-the-scenes
- Is (almost) a drop-in replacement for job arrays.

Cons:

- Assumes that nodes have a shared filesystem
 - Assumes the submission directory is writable from all nodes
- A large chunk of resources may take time to become available

An example job script (PBSPro)

```
#!/usr/bin/env nimexec
#PBS -lselect=4:ncpus=4:ompthreads=2:mem=16gb
#PBS -lwalltime=10:00:00

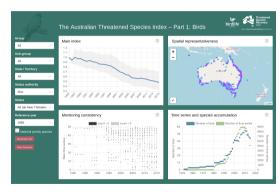
#NIM shebang /bin/bash
#NIM parameter x integer range from 1 to 100 step 1
#NIM parameter y integer range from 1 to 100 step 1
expr ${NIMROD_VAR_x} \* ${NIMROD_VAR_y}
```


An example job script (PBSPro)

```
#!/usr/bin/env nimexec
#PBS -lselect=4:ncpus=4:ompthreads=2:mem=16qb
\#PRS = -lna.1.1.t.ime = 10.00.00
#NIM shebang /usr/bin/env python3
#NIM parameter x integer range from 1 to 100 step 1
#NIM parameter y integer range from 1 to 100 step 1
import os
x = int(os.getenv('NIMROD VAR x'))
y = int(os.getenv('NIMROD_VAR_y'))
print(x * y)
```

Recap

- #NIM shebang defines the script interpreter.
 - Can be /bin/bash, /usr/bin/python, etc.
 - Defaults to /bin/sh if not specified
- #NIM parameter defines the job parameters.
- Parameter values are passed via NIMROD_VAR_ environment variables.
- $nAgents = select \times \frac{ncpus}{ompthreads}$ (PBSPro)


Use Cases

- Threatened Species Index
- Inland Drayage Research

Use Case: Threatened Species Index

- National index of threatened bird species
- Interactive data explorer
- 60 data sources and counting
- 2018 Bird, 2019 –
 Mammals, 2020 Plants

(https://tsx.org.au/tsx/)

Use Case: Threatened Species Index

- 6 parameters, ~40,000 combinations:
 - Group Terrestrial, Wetland, Marine, etc.
 - Subgroup Grassland, Rainforest, etc.
 - State/Territory QLD, NSW, etc.
 - Status authority BirdLife Australia, EPBC, ICUN
 - Status Vulnerable, Endangered
 - Reference Year
- 6 hours, with 32 cores on Tinaroo (Intel Xeon E5-2680 v3)

Use Case: Inland Drayage Research

- Optimising cargo transport routes at the Port of Brisbane.
 - Time & separation modes,
 - fleet composition & truck size,
 - coupling & precedence principles.

Use Case: Inland Drayage Research

- 600 jobs
- Walltimes from seconds to hours
- One parameter the file name
- ~2 days total walltime, down from a week
- 48 cores total, 6 nodes, 3 agents/node, 8 cores/process

What's next?

- https://github.com/UQ-RCC/nimrod-embedded
- Free Software: Apache 2.0 License
- Runs on:
 - Tinaroo, Awoonga, Flashlite (UQ, PBSPro)
 - Wiener (UQ, SLURM)
 - NordIII (BSC, Spectrum LSF)

Thank you

Zane van Iperen Research Computing Centre z.vaniperen@uq.edu.au

- f facebook.com/uniofqld
- instagram.com/uniofqld
- y twitter.com/rccuq

CRICOS code 00025B