

Multi-objective optimisation in scientific workflows

Hoang Anh Nguyen
1*

, Zane van Iperen
1
, Sreekanth Raghunath

2
, David

Abramson
1
, Timoleon Kipouros

3
, Sandeep Somasekharan

4

1
Research Computing Centre, The University of Queensland, Australia.

2
Centre for hypersonics, The University of Queensland, Australia

3
Propulsion Engineering Centre, Cranfield University, U.K.

4
Zeus Numerix Pvt. Ltd. Pune, India.

Abstract

Engineering design is typically a complex process that involves finding a set of designs satisfying

various performance criteria. As a result, optimisation algorithms dealing with only single-objective

are not sufficient to deal with many real-life problems. Meanwhile, scientific workflows have been

shown to be an effective technology for automating and encapsulating scientific processes. While

optimisation algorithms have been integrated into workflow tools, they are generally single-objective.

This paper first presents our latest development to incorporate multi-objective optimisation algorithms

into scientific workflows. We demonstrate the efficacy of these capabilities with the formulation of a

three-objective aerodynamics optimisation problem. We target to improve the aerodynamic

characteristics of a typical 2D airfoil profile considering also the laminar-turbulent transition location

for more accurate estimation of the total drag. We deploy two different heuristic optimisation

algorithms and compare the preliminary results.

Keywords: Multi-objective optimisation; Scientific Workflow; Engineering Design.

1 Introduction

Engineering design typically involves searching for good solutions that meet various performance

criteria and constraints. These optimisation problems are complex because of several characteristics.

First, they typically involve more than one, and often conflicting, objective functions. Although

objective functions can be aggregated into a single one and thus simplifying the problem, multi-

objective optimisation is generally considered to be more effective than single objective because it

allows more flexible trading between objectives [1]. Second, the evaluations of objective functions

might be computationally intensive and time consuming, which often requires access to

supercomputers. Additionally, the optimisation domain can be large, making the whole optimisation

process even more computationally intensive and time consuming. The third characteristic is related to

*
 Corresponding author: uqhngu36@uq.edu.au

the implementation details of the optimisation algorithms. As global optimisation is known to be NP-

complete, heuristics are often required to find good solutions in a reasonable time [2]. The last several

decades have seen much investment in meta-heuristics, especially nature-inspired ones such as

simulated annealing and genetic algorithms [3]. This results in many different implementations of

continuously appeared meta-heuristics, which creates another level of complexity for users when

dealing with optimisation problems in terms of problem formulation, benchmarking, etc.

Scientific workflow technology has been shown to be effective for automating and encapsulating

scientific processes [4]. Scientific workflow engines simplify the programming task by providing a

high-level environment in which users connect a set of previously defined components, implementing

a computational pipeline that meets their needs. These engines are typically integrated with distributed

computing middleware, allowing workflows to distribute computation intensive jobs to high-

performance computing platforms. There have been a large number of workflow engines produced in

recent years, but all provide similar capabilities and functions. For a fairly recent view, we refer the

reader to [3].

While optimisation codes are traditionally monolithic, solving optimisation problems with

scientific workflows brings several benefits. First, the workflow can expose the components of the

optimisation process to the user [5], making it is relatively straightforward to replace existing or add

new components. Second, the optimisation can use distributed computing support embedded in

scientific workflow engines, allowing computational intensive jobs to be off-loaded to high

performance machines. With these benefits, scientific workflows have been used to formulate and

solve optimisation problems [5]–[7]. However, only single objective optimisation is currently

supported by these systems.

In this paper, we present our latest developments that enable multi-objective optimisation.

Importantly, we aim to develop an extensible framework for future integration of different

optimisation algorithms. We demonstrate the extensibility of our design by integrating two

implementations of popular multi-objective optimisation algorithms. The paper then presents the

solution of a state-of-the-art airfoil shape optimisation that employs a new methodology resulting in

improved estimation of the total drag. Details of the methodology are presented later in Section 4.

2 Background

Optimisation is the process of searching a parameter space for the good solutions to a problem that

is defined by one or multiple objective functions. In case of only one objective function, the solution is

a point in the search space such that the objective function achieves its optimal (minimal or maximal)

value [8]. When there is more than one objective function, it is unlikely to have a single point that is

optimal for all the functions, especially if there are conflicting objectives. Instead, the solution for

these problems is a set of Pareto optimal points [9]. Each Pareto optimal point is non-dominant to

other point because the value of one object cannot be improved further without scarifying other

objects.

As mentioned earlier, multiple objectives can be aggregated into single objective, often by a

weighted sum of the objectives [8]. This allows single-objective optimisation techniques to be used to

optimise the composite objective function. However, it requires the composite function to be pre-

defined and the optimisation process generates a single vector as the optimal solution. This approach

is not ideal in real-life use cases because the composite function reflects the designers’ assumptions

about the trade-off between objective functions, rather than the actual trade-offs [1]. As a result,

multiple-objective optimisation is better to solve real-life optimisation problems.

One class of optimisation algorithm that attracts research interests is meta-heuristics. As opposed

to problem-specific heuristics, meta-heuristics are algorithms designed to solve a range of problems

without requiring significant adaptation to each problem [10]. Most meta-heuristic algorithms share a

number of characteristics. First, they are typically stochastic, rather than deterministic as in classic

optimisation algorithms [11], [12]. Second, they do not make use of gradient information of objective

functions to guide the search. The gradient-based methods are found ill suited for real world multi-

objective optimisation problems due to large search space with many local minima [1]. Instead, the

search is guided based on some nature-inspired principles from physics, biology, etc. Meta-heuristics

algorithms can be classified into two main groups: trajectory-based (or single-solution) and

population-based. Trajectory-based approaches only deal with single candidate solution. They start

with only one candidate solution, and then improve on that solution, describing a trajectory in design

space [12]. Examples of trajectory-based approach are simulated annealing, tabu search, etc. On the

other hand, population-based algorithms often use population characteristics to guide the search [12].

Some popular algorithms in this group are evolutionary algorithms, genetic algorithms and particle

swarms.

The great interest in optimisation in general has created a large number of implementations of

these algorithms. These implementations are often very different in parameter space specification, the

programming languages, the supported algorithms, etc. Various frameworks have been created to

standardize some of these aspects, thus easing the process of solving optimisation problems. Some

examples of those frameworks are: jMetal [11], OPT4J [13] and HeuristicLab [14]. These frameworks

share two common characteristics. First, they separate the optimisation algorithms from the

optimisation problem, allowing different optimisation implementations to be used on the same

problem. Users generally need to write problems as plug-ins to the frameworks. Second, these

frameworks are generally extensible, allowing new meta-heuristic algorithms to be integrated.

Workflow technology has also been used to solve optimisation problems. Compared to monolithic

codes, workflows provide users with a clear view of data flow within the optimisation process, and

thus make it easier to substitute those components [5]. There exist some work in the scientific

workflow community that recognizes the advantage of formulating and solving optimisation problems

using workflows. Crick et al. [7] added an optimizer component into Taverna workflow engine to

support its multi-disciplinary optimisation use case. This optimizer is, however, specific to structural

optimisation. Geodise [6] is capable of representing optimisation problems in workflows. Nimrod/OK

augments Kepler with a similar functionality [5]. Both systems are similar in how they implement

optimisation workflows. First, they both use loops to represent optimisation process, which is directed

by an optimisation component being the optimisation algorithm. Second, both packages support the

distribution of heavy computation jobs to various HPC platforms. Both systems, however, only

supported single-objective optimisation.

3 Multi-objective optimisation in scientific workflow

As discussed, the main objective of this paper is to develop an extensible framework to support

multi-objective optimisation workflows. In order to reduce the development time, we decided to base

our design on Nimrod/OK, an existing framework that supports single objective optimisation. This

section first describes how optimisation workflows are implemented in Nimrod/OK, and then explains

how our development enables multi-objective optimisation workflows. We also decided to integrate

two multi-objective optimisation implementations: tabu search (a trajectory-based meta-heuristic

algorithm) and GA (a population-based meta-heuristic algorithm). Notably, these two implementations

are in different programming languages, which partly show the extensibility of our design.

3.1 Nimrod/OK

Nimrod/OK is an optimisation suite built on top of Kepler, an open source workflow engine

written in Java. Kepler inherits the actor-oriented modeling approach from a mature, dataflow-oriented

platform called Ptolemy II [4]. While there is various middleware has been integrated to Kepler,

Nimrod/OK uses Nimrod/G to offload computational jobs to high performance computing platforms

[5].

A typical optimisation workflow in Nimrod/OK is shown in Figure 1. First, the search domain is

defined by the DomainSpecification component. Within this domain, PointsGenerator selects starting

points for the optimisation. Each starting point then starts a new search depending on the algorithm

implemented by Optimiser. The search algorithm will generate a set of points to be evaluated at

Objective Evaluator if they pass the Constraint Enforcer component. Both Constraint Enforcer and

Objective Evaluator are user-defined components. The results from the evaluations are then passed

back to the search algorithm for next iterations. The optimisation process only stops when a certain

condition is reached, for instance reaching maximum number of iterations, or some convergent criteria

have been met.

Each optimisation algorithm in Nimrod/OK is implemented as a separate Optimiser actor. At the

time the paper is written, Nimrod/OK supports four algorithms: Simplex, Subdivision, Hooke and

Jeeves [5] and a in-house development of single objective genetic algorithm [15].

3.2 Optimisation Actor

The current development aims to achieve three objectives. First, it needs to support multi-objective

algorithms. Regarding the process shown in Figure 1, the Optimiser needs to receive results from more

than one objective function. These results are then need to be passed to the optimisation algorithm in

order to determine the next evaluation points. Second, we aim to provide all the implementations

within a single generic actor. Switching between different algorithms is done within this Optimisation

Figure 1: Nimrod/OK optimisation process [5]

Figure 2: Java interface of the Optimisation Actor.

Actor, resulting in simpler switch between algorithms. Third, we aim to support cross-language

implementations of optimisation algorithms. The initial target is to support Java and C/C++

implementations due to their popularity.

Figure 2 shows the class diagram of the framework. The new Optimisation Actor inherits from

Nimrod/OK’s existing IterativeOptimActor. Each implementation of optimisation algorithm needs to

implement the AlgorithmDefinition interface, which defines its name, the number of supported

objectives and other default properties. The Optimisation Actor then registers these algorithms when it

is initialised. This actor allows users to perform two operations: 1) switch between registered

algorithms and 2) specify the number of objective functions. The latter operation generates a number

of input ports corresponding to the number of specified objective functions. These ports receive the

results of objective function evaluations and pass it to the corresponding algorithm. During the

execution, every iteration of the optimisation workflow corresponds to one iteration of the search

process.

Java Native Access [16] is used to support multiple programming languages. JNA is the glue

between the Java interface and the underlying native implementations. Through JNA, the Optimisation

Actor queries the available algorithms and instantiates a Java “wrapper” class for each, which is then

registered alongside the other Java-based implementations. At run-time, JNA will handle the

serialisation and deserialisation of data structures from Java to C and vice versa, facilitating

transparent usage of native algorithm implementations.

3.3 Integration of multi-objective optimisation algorithms

We integrate two implementations of popular multi-objective optimisation algorithms into the new

Optimisation Actor. One population-based algorithm and one trajectory-based algorithm were selected

to show support for both types of meta-heuristics. We also choose one C/C++ implementation to show

the cross-language support. These two multi-objective implementations are both available from the

Optimisation Actor.

Ganesh [17] is a Java-based framework that offers a multi-objective GA-based optimisation

algorithm. The framework consists of two main packages: core GA and plugins. While the core

package implements the optimisation algorithm itself, the plugins package provides interfaces and

classes to specify optimisation problems. Optimisation problems are specified as a plugins with the

domain of the optimisation and evaluations of objective functions. The evaluations can be done within

the same process or spawned as sub-processes.

The optimisation algorithm implemented in Ganesh is a GA-based meta-heuristic with self-

adaptation of its control parameters [17]. Control parameters are encoded in the internal representation

of each candidate solution along with the main parameters, which are problem definition parameters

applying to the objective functions. These control parameters are subject to change along with the

main parameters due to mutation and crossover. This kind of adaptation is different from those that

are instigated algorithmically by feedbacks at the higher level of the GA.

As Ganesh is written in Java, the integration is quite straightforward. A wrapper class is created

that implements the BaseAlgorithm class. This GaneshImpl class makes use of Ganesh core part to

perform the optimisation process. The implementation’s name and attributes are specified in the

GaneshDef class. This is partially shown in Figure 2.

MOTS2 is based on the Tabu search algorithm proposed by Connor and Tilley [8]. This algorithm

couples a local search algorithm with short, medium and long-term memories to implement search

intensification and diversification [8]. At any given point, the algorithm selects a new point in the

search space to be the next current point based on the Hooke and Jeeves move. The short-term

memory is used to store the recently visited points; the algorithm is not allowed to revisit these points

(they are ‘Tabu’). The medium-term memory records optimal or new-optimal points, which are used

to focus the search on known good values of objective functions. Finally, the long-term memory is

used to store information about explored regions; the information is then use to diversify the search to

under-explored regions. Compared to the original Tabu search, MOTS2 modifies several key areas,

including H&J move, search intensification and restart strategy. The details of MOTS2

implementation is described in [8].

MOTS2 was originally implemented as a stand-alone application/library. It is then later integrated

into the Nimrod/O optimisation framework [18]. For this implementation, MOTS2 is bundled in a

native library that is loaded by the Optimisation Actor. Once loaded, the optimisation functionality is

then exposed to the actor via JNA. Each iteration of the optimisation workflow corresponds to one

iteration in the search process.

4 Airfoil Shape Optimisation

So far, we have explained our framework and the two existing implementations of multi-objective

algorithms integrated into the framework. In this section, a state-of-the-art airfoil optimisation is used

to demonstrate how the newly developed components are used to develop an aerodynamic shape

optimisation of two-dimensional airfoils.

Viscous drag reduction in aerospace vehicles has always been one of the most challenging

problems in aerospace research. Various techniques employed for viscous drag reduction have been

described in [19], [20]. One of the popular approaches adopted by researchers to reduce drag is to

maximise the extent of laminar flow over the wings. This is achieved either by shape optimisation

[21]–[23] or using one of laminar flow control techniques, for instance, adding riblets on the surface

of the wing [24], wall heating [25] or suction [26]. The novelty in this airfoil shape optimisation is the

inclusion of skin friction through the transition zone for the total drag estimation. Most of the other

reported optimisation studies either assume that the flow would be fully turbulent downstream of the

location of onset of transition or do not include the effects of transition in their studies at all [27],

which results in sub-optimal designs.

Airfoil geometries in our optimisation process are defined by two Bezier curves: one representing

thickness curve and the other one representing camber curve of the airfoil. Each curve is in turned

defined by Bezier control points. We use six thickness points to specify thickness curve and five

camber points to specify camber curve (Figure 3 left). As the first and last points in both thickness and

camber curve are fixed, the movement of the three camber points and four thickness points in the

Cartesian space define the parameter space of the optimisation process (Figure 3 left). The upper and

lower surface of the airfoil is then generated based on the camber and thickness curve. A check is

performed to see if the generated airfoils lie within the geometry constraints specified and only valid

individuals are carried on to the next step. The thickness range of the generated airfoils is limited to

remain between 7% and 50% of the chord at any given location. To ensure a smooth leading edge, the

thickness is limited to 11% of the chord in the first 5% of the chord near the leading edge. The

maximum thickness is limited to 20% of the chord in the last 20% of the chord and to 6% of the chord

in the last 6% of the chord. The thickness at all locations is limited to above 2%, ensuring non-zero

Figure 3: An airfoil geometry (left) and parameter definition (right).

thickness in throughout the airfoil geometries.

XFOIL [28] is then used to determine the velocity and pressure distributions over all the valid

airfoil geometries. The velocity distribution obtained from XFOIL is used in the transition prediction

module. The correlation-based γ-Reθ transition prediction model of Langtry and Menter [29], which

takes into account the effects of free-stream turbulence intensity and pressure gradient to predict the

location of onset of transition, has been used in the current study. To model the intermittent transition

zone, the intermittency factor of Narasimha [30] has been used in conjunction with the Linear

Combination Model approach described in [31]. An accurate estimation of the total drag is thus

obtained from this process.

In this use case, we aim to achieve three objectives:

• To maximize the lift-to-drag ratio at a given angle of attack

• To maximize the laminar flow in the upper surface

• And to maximize the laminar flow in the lower surface

The above optimisation process is implemented as a workflow shown in Figure 4. The

DefineSearchSpace actor first initiates the optimisation by defining the domain of the search, which is

shown in the left part of Figure 4. This search space is specified by the coordinates of the Bezier

control points; thickness curve is represented by ax, ay variables while cx, cy variables represent

camber curve. The starting points will be selected from this domain by the SelectPointsActor, and will

be sent to the Optimisation Actor. As this workflow involves three objective functions, the

Optimisation Actor is configured to have 3 objective ports. The workflow executes with both Tabu

search and Ganesh implementation. The optimisation actor generates set of points that are sent for

evaluation. In this workflow, Bezier curve generation, Xfoil and transition zone estimation are

combined into the Compute actor, which calculates:

• cld: lift-to-drag ratio

Figure 4: Optimisation workflow

• txu: x-coordinate of transition point in upper surface

• txl: x-coordinate of transition point in lower surface

Since the default option of both Ganesh and MOTS2 are minimization, the values of these results are

reversed before they are passed back to the Optimisation Actor. This actor decides the next iterations

based on these evaluations. The cycle stops when convergence criteria specified in the optimisation

actor are met.

5 Results and Discussion

For this experiment, we set the workflow to the typical flight conditions experienced in unmanned

aerial vehicles (UAVs): a Reynolds number of 3x10
6
 and Mach number of 0.14 at zero angle of attack.

We then execute the workflow with the two newly available algorithms in Nimrod/OK: MOTS2 and

Ganesh GA. Both algorithms are started with random starting points and limited to 60,000 evaluations

of objective functions in order to compare between them. This corresponds to the setting of 500

generations with 120 individuals in GA and 60,000 iterations in MOTS2. Other configuration settings

of both algorithms are left to default.

Figure 5 shows the Pareto set designs of the three-objective optimisation described in the previous

section; the plot is available at https://plot.ly/~hoangnguyen177/9.embed. As from the figure, both GA

and MOTS2 produce similar trends in terms of trade-off points. However, we found that MOTS2

outperforms GA when considering either of these objective sets. When the objective is to maximize

both cld and txu, the lift-to-drag ratio reaches maximum when the transition location is between 0.5

and 0.85 of the chord length in both algorithms. MOTS2 and GA show quite different results in the

lower surface. While MOTS2 produces highest lift-to-drag ratio when the transition location stays

within 0.8 and 0.85 of the chord length, this value generated by GA reaches maximum when the

Figure 5: 3D Pareto set.

location is between 0.5 and 0.85 of the total chord length. Both algorithms produce similar results

when the location of transition is closer to either the leading or the trailing edge of the airfoil. It can

also be seen from the plots that the transition location has little effect on the lift-to-drag ratio, when it

is closer to either of the two extremes.

From this experiment, we can conclude that the best designs in terms of high lift-to-drag ratios

require transition location to be in the region of 0.5 to 0.8 of the chord at the flight conditions

considered during this experiment.

6 Conclusion

The paper has presented the latest development in scientific workflow to enable multi-objective

optimisation. This includes an extensible framework and two well-known multi-objective optimisation

algorithms. We then use the newly developed capability to solve a state-of-the-art airfoil shape

optimisation problem with three objective functions: maximization of lift-to-drag ratio, maximization

of laminar flow in upper and lower surface. In this process we include a transition prediction model to

predict the onset transition location and the distribution of skin friction through the transition zone for

a more accurate estimation of total drag. We have demonstrated the flexibility and convenience

offered to the user when optimisation studies are managed through workflow framework, such as

Nimrod/OK.

While there is not much work from the research community to formulate and solve multi-objective

optimisation problems as workflows, there are several commercial software packages with this feature.

Examples of these tools are OPTIMUS, modelFrontier, ModelCentre and Matlab Simulink. Amongst

these tools, our work is similar to ModelCentre in which the optimisation process is explicitly

expressed in the workflow via iterations. Other tools only allow users to specify the engineering

processes that evaluate objective functions; optimisation is performed outside the workflow.

There are several improvements we would like to make to the current work. First, we would like to

integrate more optimisation algorithms into Nimrod/OK. Second, we would like to extend the

workflow to 3D design applications of each optimal solution in the Pareto front. This should be

straightforward as adding new components into a workflow is relatively simple. And third, we would

like to include other objectives related to structural, electro-magnetic, aero-acoustics and other

disciplines in order to develop workflows for multi-objective, multidisciplinary optimisation

processes.

References

[1] T. Kipouros, D. M. Jaeggi, W. N. Dawes, G. T. Parks, a. M. Savill, and P. J. Clarkson, “Biobjective

Design Optimisation for Axial Compressors Using Tabu Search,” AIAA Journal, vol. 46, no. 3, pp. 701–

711, 2008.

[2] M. R. Gary and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness.

New York: WH Freeman and Company, 1979.

[3] D. F. Jones, S. K. Mirrazavi, and M. Tamiz, “Multi-objective meta-heuristics: An overview of the

current state-of-the-art,” European Journal of Operational Research, vol. 137, no. 1, pp. 1–9, 2002.

[4] B. Ludascher, C. Berkley, M. Jones, and E. A. Lee, “Scientific Workflow Management and the Kepler

System,” Concurrency and Computation Practice Experience, vol. 18, no. 10, pp. 1039–1065, 2006.

[5] D. Abramson, B. Bethwaite, C. Enticott, S. Garic, T. Peachey, A. Michailova, and S. Amirriazi,

“Embedding optimisation in computational science workflows,” Journal of Computational Science, vol.

1, no. 1, pp. 41–47, May 2010.

[6] F. Xu, M. H. Eres, F. Tao, and S. J. Cox, “Workflow Support for Advanced Grid-Enabled Computing,”

in Proceedings of the UK e-Science All Hands Meeting, 2004, pp. 430–437.

[7] T. Crick, P. Dunning, H. Kim, and J. Padget, “Engineering design optimisation using services and

workflows,” Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and

Engineering Sciences, vol. 367, no. 1898, pp. 2741–2751, 2009.

[8] D. M. Jaeggi, G. T. Parks, T. Kipouros, and P. J. Clarkson, “The development of a multi-objective Tabu

Search algorithm for continuous optimisation problems,” European Journal of Operational Research,

vol. 185, no. 3, pp. 1192–1212, 2008.

[9] E. Zitzler, K. Deb, and L. Thiele, “Comparison of Multiobjective Evolutionary Algorithms: Empirical

Results,” Evolutionary Computation, vol. 8, no. 2, pp. 173–195, 2013.

[10] X.-S. Yang, Nature-inspired metaheuristic algorithms. Luniver press, 2010.

[11] J. J. Durillo, A. J. Nebro, F. Luna, B. Dorronsoro, and E. Alba, “jMetal : a Java framework for

developing multi-objective optimisation metaheuristics,” 2006.

[12] I. Boussaïd, J. Lepagnot, and P. Siarry, “A survey on optimisation metaheuristics,” Information Sciences,

vol. 237, pp. 82–117, 2013.

[13] M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich, “Opt4J – A Modular Framework for Meta-heuristic

Optimisation,” in Proceedings of the Genetic and Evolutionary Computing Conference, 2011, pp. 1723--

1730.

[14] S. Wagner and M. Affenzeller, “HeuristicLab: A Generic and Extensible Optimisation Environment,” in

Adaptive and Natural Computing Algorithms, Springer, 2005, pp. 538–541.

[15] Y. H. Lim, J. Tana, and D. Abramson, “Solving Optimisation Problems in Nimrod/OK using a Genetic

Algorithm,” in Proceedings of the International Conference on Computational Science, ICCS 2012,

2012, vol. 9, pp. 1647–1656.

[16] T. Wall, “Java Native Access.” [Online]. Available: https://github.com/java-native-access/jna.

[Accessed: 30-Jan-2017].

[17] J. Oliver, T. Kipouros, and A. M. Savill, “A Self-adaptive Genetic Algorithm Applied to Multi-Objective

Optimisation of an Airfoil,” Advances in Intelligent Systems and Computing, vol. 227, pp. 261–276,

2013.

[18] T. Kipouros, T. Peachey, D. Abramson, and A. M. Savill, “Enhancing and Developing the Practical

Optimisation Capabilities and Intelligence of Automatic Design Software,” in 53rd

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference April 2012.

[19] D. Bushnell, “Aircraft drag reduction--a review,” Proceedings of the Institution of Mechanical

Engineers, Part G: Journal of Aerospace Engineering, vol. 217, October 2015, pp. 1–18, 2003.

[20] M. Jahanmiri, “Aircraft Drag Reduction: An Overview,” 2011.

[21] A. Jameson and S. Kim, “Reduction of the Adjoint Gradient Formula for Aerodynamic Shape

Optimisation Problems,” AIAA Journal, vol. 41, no. 11, pp. 2114–2129, 2003.

[22] O. G. Amoignon, J. O. Pralits, A. Hanifi, M. Berggren, and D. S. Henningson, “Shape optimisation for

delay of laminar turbulent transition,” AIAA Journal, vol. 44, no. 5, pp. 1009–1024, 2006.

[23] X. Chen and R. K. Agarwal, “Shape optimisation of airfoils in transonic flow using a multi-objective

genetic algorithm,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of

Aerospace Engineering, vol. 228, no. 9, pp. 1654–1667, 2013.

[24] P. R. Viswanath, “Aircraft viscous drag reduction using riblets,” Progress in Aerospace Sciences, vol.

38, no. 6–7, pp. 571–600, 2002.

[25] A. Dovgal, V. Y. Levchenko, and V. Timopeev, “Boundary layer control by a local heating of the wall,”

Laminar-Turbulent Transition (Springer Berlin Heidelberg), pp. 113–121, 1990.

[26] A. Hani, J. Pralitsy, O. Amoignon, and M. Chevalier, “Laminar Flow Control and Aerodynamic Shape

Optimisation,” in KATnet II Conference on Key Aerodynamic Technologies, 2009.

[27] C. Wauquiez, Shape optimisation of low speed airfoils using Matlab and Automatic Differentiation.

VDM Publishing, 2009.

[28] M. Drela, “XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils,” in Low

Reynolds Number Aerodynamics, 1989, pp. 1–12.

[29] R. B. Langtry and F. R. Menter, “Correlation-based transition modeling for unstructured parallelized

computational fluid dynamics codes,” AIAA Journal, vol. 47, no. 12, pp. 2894–2906, 2009.

[30] R. Narasimha, “On the distribution of intermittency in the transition region of a boundary layer,” Journal

of the Aeronautical Sciences, vol. 24, no. 9, pp. 711--712, 1957.

[31] R. Narasimha and J. Dey, “Transition-zone models for 2-dimensional boundary layers: A review,”

Sadhana, vol. 14, no. 2, pp. 93–120, 1989.

