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Abstract 

Engineering design is typically a complex process that involves finding a set of designs satisfying 

various performance criteria. As a result, optimisation algorithms dealing with only single-objective 

are not sufficient to deal with many real-life problems. Meanwhile, scientific workflows have been 

shown to be an effective technology for automating and encapsulating scientific processes. While 

optimisation algorithms have been integrated into workflow tools, they are generally single-objective. 

This paper first presents our latest development to incorporate multi-objective optimisation algorithms 

into scientific workflows. We demonstrate the efficacy of these capabilities with the formulation of a 

three-objective aerodynamics optimisation problem. We target to improve the aerodynamic 

characteristics of a typical 2D airfoil profile considering also the laminar-turbulent transition location 

for more accurate estimation of the total drag. We deploy two different heuristic optimisation 

algorithms and compare the preliminary results.  
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1 Introduction 

Engineering design typically involves searching for good solutions that meet various performance 

criteria and constraints. These optimisation problems are complex because of several characteristics. 

First, they typically involve more than one, and often conflicting, objective functions. Although 

objective functions can be aggregated into a single one and thus simplifying the problem, multi-

objective optimisation is generally considered to be more effective than single objective because it 

allows more flexible trading between objectives [1]. Second, the evaluations of objective functions 

might be computationally intensive and time consuming, which often requires access to 

supercomputers. Additionally, the optimisation domain can be large, making the whole optimisation 

process even more computationally intensive and time consuming. The third characteristic is related to 
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the implementation details of the optimisation algorithms. As global optimisation is known to be NP-

complete, heuristics are often required to find good solutions in a reasonable time [2]. The last several 

decades have seen much investment in meta-heuristics, especially nature-inspired ones such as 

simulated annealing and genetic algorithms [3]. This results in many different implementations of 

continuously appeared meta-heuristics, which creates another level of complexity for users when 

dealing with optimisation problems in terms of problem formulation, benchmarking, etc.  

Scientific workflow technology has been shown to be effective for automating and encapsulating 

scientific processes [4]. Scientific workflow engines simplify the programming task by providing a 

high-level environment in which users connect a set of previously defined components, implementing 

a computational pipeline that meets their needs. These engines are typically integrated with distributed 

computing middleware, allowing workflows to distribute computation intensive jobs to high-

performance computing platforms. There have been a large number of workflow engines produced in 

recent years, but all provide similar capabilities and functions. For a fairly recent view, we refer the 

reader to [3].  

While optimisation codes are traditionally monolithic, solving optimisation problems with 

scientific workflows brings several benefits. First, the workflow can expose the components of the 

optimisation process to the user [5], making it is relatively straightforward to replace existing or add 

new components. Second, the optimisation can use distributed computing support embedded in 

scientific workflow engines, allowing computational intensive jobs to be off-loaded to high 

performance machines. With these benefits, scientific workflows have been used to formulate and 

solve optimisation problems [5]–[7]. However, only single objective optimisation is currently 

supported by these systems.  

In this paper, we present our latest developments that enable multi-objective optimisation. 

Importantly, we aim to develop an extensible framework for future integration of different 

optimisation algorithms. We demonstrate the extensibility of our design by integrating two 

implementations of popular multi-objective optimisation algorithms. The paper then presents the 

solution of a state-of-the-art airfoil shape optimisation that employs a new methodology resulting in 

improved estimation of the total drag. Details of the methodology are presented later in Section 4.   

2 Background 

Optimisation is the process of searching a parameter space for the good solutions to a problem that 

is defined by one or multiple objective functions. In case of only one objective function, the solution is 

a point in the search space such that the objective function achieves its optimal (minimal or maximal) 

value [8]. When there is more than one objective function, it is unlikely to have a single point that is 

optimal for all the functions, especially if there are conflicting objectives. Instead, the solution for 

these problems is a set of Pareto optimal points [9]. Each Pareto optimal point is non-dominant to 

other point because the value of one object cannot be improved further without scarifying other 

objects.  

As mentioned earlier, multiple objectives can be aggregated into single objective, often by a 

weighted sum of the objectives [8]. This allows single-objective optimisation techniques to be used to 

optimise the composite objective function. However, it requires the composite function to be pre-

defined and the optimisation process generates a single vector as the optimal solution. This approach 

is not ideal in real-life use cases because the composite function reflects the designers’ assumptions 

about the trade-off between objective functions, rather than the actual trade-offs [1]. As a result, 

multiple-objective optimisation is better to solve real-life optimisation problems.  

One class of optimisation algorithm that attracts research interests is meta-heuristics. As opposed 

to problem-specific heuristics, meta-heuristics are algorithms designed to solve a range of problems 

without requiring significant adaptation to each problem [10]. Most meta-heuristic algorithms share a 

number of characteristics. First, they are typically stochastic, rather than deterministic as in classic 



 

 

optimisation algorithms [11], [12]. Second, they do not make use of gradient information of objective 

functions to guide the search. The gradient-based methods are found ill suited for real world multi-

objective optimisation problems due to large search space with many local minima [1]. Instead, the 

search is guided based on some nature-inspired principles from physics, biology, etc. Meta-heuristics 

algorithms can be classified into two main groups: trajectory-based (or single-solution) and 

population-based. Trajectory-based approaches only deal with single candidate solution. They start 

with only one candidate solution, and then improve on that solution, describing a trajectory in design 

space [12]. Examples of trajectory-based approach are simulated annealing, tabu search, etc. On the 

other hand, population-based algorithms often use population characteristics to guide the search [12]. 

Some popular algorithms in this group are evolutionary algorithms, genetic algorithms and particle 

swarms. 

The great interest in optimisation in general has created a large number of implementations of 

these algorithms. These implementations are often very different in parameter space specification, the 

programming languages, the supported algorithms, etc. Various frameworks have been created to 

standardize some of these aspects, thus easing the process of solving optimisation problems. Some 

examples of those frameworks are: jMetal [11], OPT4J [13] and HeuristicLab [14]. These frameworks 

share two common characteristics. First, they separate the optimisation algorithms from the 

optimisation problem, allowing different optimisation implementations to be used on the same 

problem. Users generally need to write problems as plug-ins to the frameworks. Second, these 

frameworks are generally extensible, allowing new meta-heuristic algorithms to be integrated. 

Workflow technology has also been used to solve optimisation problems. Compared to monolithic 

codes, workflows provide users with a clear view of data flow within the optimisation process, and 

thus make it easier to substitute those components [5]. There exist some work in the scientific 

workflow community that recognizes the advantage of formulating and solving optimisation problems 

using workflows. Crick et al. [7] added an optimizer component into Taverna workflow engine to 

support its multi-disciplinary optimisation use case. This optimizer is, however, specific to structural 

optimisation. Geodise [6] is capable of representing optimisation problems in workflows. Nimrod/OK 

augments Kepler with a similar functionality [5]. Both systems are similar in how they implement 

optimisation workflows. First, they both use loops to represent optimisation process, which is directed 

by an optimisation component being the optimisation algorithm. Second, both packages support the 

distribution of heavy computation jobs to various HPC platforms. Both systems, however, only 

supported single-objective optimisation. 

3 Multi-objective optimisation in scientific workflow 

As discussed, the main objective of this paper is to develop an extensible framework to support 

multi-objective optimisation workflows. In order to reduce the development time, we decided to base 

our design on Nimrod/OK, an existing framework that supports single objective optimisation. This 

section first describes how optimisation workflows are implemented in Nimrod/OK, and then explains 

how our development enables multi-objective optimisation workflows. We also decided to integrate 

two multi-objective optimisation implementations: tabu search (a trajectory-based meta-heuristic 

algorithm) and GA (a population-based meta-heuristic algorithm). Notably, these two implementations 

are in different programming languages, which partly show the extensibility of our design.  

3.1 Nimrod/OK 

Nimrod/OK is an optimisation suite built on top of Kepler, an open source workflow engine 

written in Java. Kepler inherits the actor-oriented modeling approach from a mature, dataflow-oriented 

platform called Ptolemy II [4]. While there is various middleware has been integrated to Kepler, 



 

 

Nimrod/OK uses Nimrod/G to offload computational jobs to high performance computing platforms 

[5].  

A typical optimisation workflow in Nimrod/OK is shown in Figure 1. First, the search domain is 

defined by the DomainSpecification component. Within this domain, PointsGenerator selects starting 

points for the optimisation. Each starting point then starts a new search depending on the algorithm 

implemented by Optimiser. The search algorithm will generate a set of points to be evaluated at 

Objective Evaluator if they pass the Constraint Enforcer component. Both Constraint Enforcer and 

Objective Evaluator are user-defined components. The results from the evaluations are then passed 

back to the search algorithm for next iterations. The optimisation process only stops when a certain 

condition is reached, for instance reaching maximum number of iterations, or some convergent criteria 

have been met.  

Each optimisation algorithm in Nimrod/OK is implemented as a separate Optimiser actor. At the 

time the paper is written, Nimrod/OK supports four algorithms: Simplex, Subdivision, Hooke and 

Jeeves [5] and a in-house development of single objective genetic algorithm [15]. 

3.2 Optimisation Actor 

The current development aims to achieve three objectives. First, it needs to support multi-objective 

algorithms. Regarding the process shown in Figure 1, the Optimiser needs to receive results from more 

than one objective function. These results are then need to be passed to the optimisation algorithm in 

order to determine the next evaluation points. Second, we aim to provide all the implementations 

within a single generic actor. Switching between different algorithms is done within this Optimisation 

 

 

Figure 1: Nimrod/OK optimisation process [5] 

 

 

Figure 2: Java interface of the Optimisation Actor. 



 

 

Actor, resulting in simpler switch between algorithms. Third, we aim to support cross-language 

implementations of optimisation algorithms. The initial target is to support Java and C/C++ 

implementations due to their popularity.  

Figure 2 shows the class diagram of the framework. The new Optimisation Actor inherits from 

Nimrod/OK’s existing IterativeOptimActor. Each implementation of optimisation algorithm needs to 

implement the AlgorithmDefinition interface, which defines its name, the number of supported 

objectives and other default properties. The Optimisation Actor then registers these algorithms when it 

is initialised. This actor allows users to perform two operations: 1) switch between registered 

algorithms and 2) specify the number of objective functions. The latter operation generates a number 

of input ports corresponding to the number of specified objective functions.  These ports receive the 

results of objective function evaluations and pass it to the corresponding algorithm. During the 

execution, every iteration of the optimisation workflow corresponds to one iteration of the search 

process.  

Java Native Access [16] is used to support multiple programming languages. JNA is the glue 

between the Java interface and the underlying native implementations. Through JNA, the Optimisation 

Actor queries the available algorithms and instantiates a Java “wrapper” class for each, which is then 

registered alongside the other Java-based implementations. At run-time, JNA will handle the 

serialisation and deserialisation of data structures from Java to C and vice versa, facilitating 

transparent usage of native algorithm implementations. 

3.3 Integration of multi-objective optimisation algorithms 

We integrate two implementations of popular multi-objective optimisation algorithms into the new 

Optimisation Actor. One population-based algorithm and one trajectory-based algorithm were selected 

to show support for both types of meta-heuristics. We also choose one C/C++ implementation to show 

the cross-language support. These two multi-objective implementations are both available from the 

Optimisation Actor.  

Ganesh [17] is a Java-based framework that offers a multi-objective GA-based optimisation 

algorithm. The framework consists of two main packages: core GA and plugins. While the core 

package implements the optimisation algorithm itself, the plugins package provides interfaces and 

classes to specify optimisation problems. Optimisation problems are specified as a plugins with the 

domain of the optimisation and evaluations of objective functions. The evaluations can be done within 

the same process or spawned as sub-processes.  

The optimisation algorithm implemented in Ganesh is a GA-based meta-heuristic with self-

adaptation of its control parameters [17]. Control parameters are encoded in the internal representation 

of each candidate solution along with the main parameters, which are problem definition parameters 

applying to the objective functions. These control parameters are subject to change along with the 

main parameters due to mutation and crossover.  This kind of adaptation is different from those that 

are instigated algorithmically by feedbacks at the higher level of the GA.  

As Ganesh is written in Java, the integration is quite straightforward. A wrapper class is created 

that implements the BaseAlgorithm class. This GaneshImpl class makes use of Ganesh core part to 

perform the optimisation process. The implementation’s name and attributes are specified in the 

GaneshDef class. This is partially shown in Figure 2.  

MOTS2 is based on the Tabu search algorithm proposed by Connor and Tilley [8]. This algorithm 

couples a local search algorithm with short, medium and long-term memories to implement search 

intensification and diversification [8]. At any given point, the algorithm selects a new point in the 

search space to be the next current point based on the Hooke and Jeeves move. The short-term 

memory is used to store the recently visited points; the algorithm is not allowed to revisit these points 

(they are ‘Tabu’). The medium-term memory records optimal or new-optimal points, which are used 

to focus the search on known good values of objective functions. Finally, the long-term memory is 

used to store information about explored regions; the information is then use to diversify the search to 



 

 

under-explored regions. Compared to the original Tabu search, MOTS2 modifies several key areas, 

including H&J move, search intensification and restart strategy. The details of MOTS2 

implementation is described in [8]. 

MOTS2 was originally implemented as a stand-alone application/library. It is then later integrated 

into the Nimrod/O optimisation framework [18]. For this implementation, MOTS2 is bundled in a 

native library that is loaded by the Optimisation Actor. Once loaded, the optimisation functionality is 

then exposed to the actor via JNA. Each iteration of the optimisation workflow corresponds to one 

iteration in the search process.  

4 Airfoil Shape Optimisation 

So far, we have explained our framework and the two existing implementations of multi-objective 

algorithms integrated into the framework. In this section, a state-of-the-art airfoil optimisation is used 

to demonstrate how the newly developed components are used to develop an aerodynamic shape 

optimisation of two-dimensional airfoils.   

Viscous drag reduction in aerospace vehicles has always been one of the most challenging 

problems in aerospace research. Various techniques employed for viscous drag reduction have been 

described in [19], [20]. One of the popular approaches adopted by researchers to reduce drag is to 

maximise the extent of laminar flow over the wings. This is achieved either by shape optimisation 

[21]–[23] or using one of laminar flow control techniques, for instance, adding riblets on the surface 

of the wing [24], wall heating [25] or suction [26]. The novelty in this airfoil shape optimisation is the 

inclusion of skin friction through the transition zone for the total drag estimation. Most of the other 

reported optimisation studies either assume that the flow would be fully turbulent downstream of the 

location of onset of transition or do not include the effects of transition in their studies at all [27], 

which results in sub-optimal designs.  

Airfoil geometries in our optimisation process are defined by two Bezier curves: one representing 

thickness curve and the other one representing camber curve of the airfoil. Each curve is in turned 

defined by Bezier control points. We use six thickness points to specify thickness curve and five 

camber points to specify camber curve (Figure 3 left). As the first and last points in both thickness and 

camber curve are fixed, the movement of the three camber points and four thickness points in the 

Cartesian space define the parameter space of the optimisation process (Figure 3 left). The upper and 

lower surface of the airfoil is then generated based on the camber and thickness curve. A check is 

performed to see if the generated airfoils lie within the geometry constraints specified and only valid 

individuals are carried on to the next step. The thickness range of the generated airfoils is limited to 

remain between 7% and 50% of the chord at any given location. To ensure a smooth leading edge, the 

thickness is limited to 11% of the chord in the first 5% of the chord near the leading edge. The 

maximum thickness is limited to 20% of the chord in the last 20% of the chord and to 6% of the chord 

in the last 6% of the chord. The thickness at all locations is limited to above 2%, ensuring non-zero 

 

  

Figure 3: An airfoil geometry (left) and parameter definition (right). 



 

 

thickness in throughout the airfoil geometries. 

XFOIL [28] is then used to determine the velocity and pressure distributions over all the valid 

airfoil geometries. The velocity distribution obtained from XFOIL is used in the transition prediction 

module. The correlation-based γ-Reθ transition prediction model of Langtry and Menter [29], which 

takes into account the effects of free-stream turbulence intensity and pressure gradient to predict the 

location of onset of transition, has been used in the current study. To model the intermittent transition 

zone, the intermittency factor of Narasimha [30] has been used in conjunction with the Linear 

Combination Model approach described in [31]. An accurate estimation of the total drag is thus 

obtained from this process.  

In this use case, we aim to achieve three objectives: 

• To maximize the lift-to-drag ratio at a given angle of attack 

• To maximize the laminar flow in the upper surface  

• And to maximize the laminar flow in the lower surface 

The above optimisation process is implemented as a workflow shown in Figure 4. The 

DefineSearchSpace actor first initiates the optimisation by defining the domain of the search, which is 

shown in the left part of Figure 4. This search space is specified by the coordinates of the Bezier 

control points; thickness curve is represented by ax, ay variables while cx, cy variables represent 

camber curve. The starting points will be selected from this domain by the SelectPointsActor, and will 

be sent to the Optimisation Actor. As this workflow involves three objective functions, the 

Optimisation Actor is configured to have 3 objective ports. The workflow executes with both Tabu 

search and Ganesh implementation. The optimisation actor generates set of points that are sent for 

evaluation. In this workflow, Bezier curve generation, Xfoil and transition zone estimation are 

combined into the Compute actor, which calculates: 

• cld: lift-to-drag ratio  

 

  

Figure 4: Optimisation workflow 



 

 

• txu: x-coordinate of transition point in upper surface  

• txl: x-coordinate of transition point in lower surface 

Since the default option of both Ganesh and MOTS2 are minimization, the values of these results are 

reversed before they are passed back to the Optimisation Actor. This actor decides the next iterations 

based on these evaluations. The cycle stops when convergence criteria specified in the optimisation 

actor are met. 

5 Results and Discussion  

For this experiment, we set the workflow to the typical flight conditions experienced in unmanned 

aerial vehicles (UAVs): a Reynolds number of 3x10
6
 and Mach number of 0.14 at zero angle of attack. 

We then execute the workflow with the two newly available algorithms in Nimrod/OK: MOTS2 and 

Ganesh GA. Both algorithms are started with random starting points and limited to 60,000 evaluations 

of objective functions in order to compare between them. This corresponds to the setting of 500 

generations with 120 individuals in GA and 60,000 iterations in MOTS2. Other configuration settings 

of both algorithms are left to default.  

 

Figure 5 shows the Pareto set designs of the three-objective optimisation described in the previous 

section; the plot is available at https://plot.ly/~hoangnguyen177/9.embed. As from the figure, both GA 

and MOTS2 produce similar trends in terms of trade-off points. However, we found that MOTS2 

outperforms GA when considering either of these objective sets. When the objective is to maximize 

both cld and txu, the lift-to-drag ratio reaches maximum when the transition location is between 0.5 

and 0.85 of the chord length in both algorithms. MOTS2 and GA show quite different results in the 

lower surface. While MOTS2 produces highest lift-to-drag ratio when the transition location stays 

within 0.8 and 0.85 of the chord length, this value generated by GA reaches maximum when the 

 
 

Figure 5: 3D Pareto set. 



 

 

location is between 0.5 and 0.85 of the total chord length. Both algorithms produce similar results 

when the location of transition is closer to either the leading or the trailing edge of the airfoil. It can 

also be seen from the plots that the transition location has little effect on the lift-to-drag ratio, when it 

is closer to either of the two extremes.  

From this experiment, we can conclude that the best designs in terms of high lift-to-drag ratios 

require transition location to be in the region of 0.5 to 0.8 of the chord at the flight conditions 

considered during this experiment. 

6 Conclusion 

The paper has presented the latest development in scientific workflow to enable multi-objective 

optimisation. This includes an extensible framework and two well-known multi-objective optimisation 

algorithms. We then use the newly developed capability to solve a state-of-the-art airfoil shape 

optimisation problem with three objective functions: maximization of lift-to-drag ratio, maximization 

of laminar flow in upper and lower surface. In this process we include a transition prediction model to 

predict the onset transition location and the distribution of skin friction through the transition zone for 

a more accurate estimation of total drag. We have demonstrated the flexibility and convenience 

offered to the user when optimisation studies are managed through workflow framework, such as 

Nimrod/OK. 

While there is not much work from the research community to formulate and solve multi-objective 

optimisation problems as workflows, there are several commercial software packages with this feature. 

Examples of these tools are OPTIMUS, modelFrontier, ModelCentre and Matlab Simulink. Amongst 

these tools, our work is similar to ModelCentre in which the optimisation process is explicitly 

expressed in the workflow via iterations. Other tools only allow users to specify the engineering 

processes that evaluate objective functions; optimisation is performed outside the workflow. 

There are several improvements we would like to make to the current work. First, we would like to 

integrate more optimisation algorithms into Nimrod/OK. Second, we would like to extend the 

workflow to 3D design applications of each optimal solution in the Pareto front. This should be 

straightforward as adding new components into a workflow is relatively simple. And third, we would 

like to include other objectives related to structural, electro-magnetic, aero-acoustics and other 

disciplines in order to develop workflows for multi-objective, multidisciplinary optimisation 

processes. 
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